Natural Killer Cell Activity and Killer Immunoglobulin-Like Receptors in Hematopoietic Stem Cell Transplantation

  • Loredana Ruggeri
  • Shuhong Zhang
  • Sherif S. Farag
Part of the Cancer Treatment and Research book series (CTAR, volume 144)


Natural Killer Cell Hematopoietic Stem Cell Transplantation Major Histocompatibility Complex Class Natural Killer Cell Receptor CD56dim Natural Killer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990;75:555–62.PubMedGoogle Scholar
  2. 2.
    Collins RH Jr, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15:433–44.PubMedGoogle Scholar
  3. 3.
    Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001;97:3146–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 1990;171:1509–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Baume DM, Robertson MJ, Levine H, Manley TJ, Schow PW, Ritz J. Differential responses to interleukin 2 define functionally distinct subsets of human natural killer cells. Eur J Immunol. 1992;22:1–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Caligiuri MA, Murray C, Robertson MJ, et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest. 1993;91:123–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Nagler A, Lanier LL, Cwirla S, Phillips JH. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989;143:3183–91.PubMedGoogle Scholar
  9. 9.
    Nagler A, Lanier LL, Phillips JH. Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med. 1990;171:1527–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Farag SS, George SL, Lee EJ, et al. Postremission therapy with low-dose interleukin 2 with or without intermediate pulse dose interleukin 2 therapy is well tolerated in elderly patients with acute myeloid leukemia: Cancer and Leukemia Group B study 9420. Clin Cancer Res. 2002;8:2812–9.PubMedGoogle Scholar
  11. 11.
    Lanier LL. Activating and inhibitory NK cell receptors. Adv Exp Med Biol. 1998;452:13–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Bakker AB, Wu J, Phillips JH, Lanier LL. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals. Hum Immunol. 2000;61:18–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Ljunggren HG, Karre K. In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today. 1990;11:237–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Moretta A, Bottino C, Pende D, et al. Identification of four subsets of human CD3-CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med. 1990;172:1589–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Moretta L, Ciccone E, Moretta A, Hoglund P, Ohlen C, Karre K. Allorecognition by NK cells: nonself or no self? Immunol Today. 1992;13:300–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Ciccone E, Pende D, Viale O, et al. Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans. J Exp Med. 1992;175:709–18.PubMedCrossRefGoogle Scholar
  17. 17.
    Colonna M, Brooks EG, Falco M, Ferrara GB, Strominger JL. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science 1993;260:1121–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Moretta A, Vitale M, Bottino C, et al. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med. 1993;178:597–604.PubMedCrossRefGoogle Scholar
  19. 19.
    Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. [comment]. Science 1995;268:405–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol. 1999;17:875–904.PubMedCrossRefGoogle Scholar
  21. 21.
    Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997;7:753–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Lanier LL. NK cell receptors. Annu Rev Immunol. 1998;16:359–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Biassoni R, Falco M, Cambiaggi A, et al. Amino acid substitutions can influence the natural killer (NK)-mediated recognition of HLA-C molecules. Role of serine-77 and lysine-80 in the target cell protection from lysis mediated by “group 2” or “group 1” NK clones. J Exp Med. 1995;182:605–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Mandelboim O, Reyburn HT, Vales-Gomez M, et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J Exp Med. 1996;184:913–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Winter CC, Gumperz JE, Parham P, Long EO, Wagtmann N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J Immunol. 1998;161:571–7.PubMedGoogle Scholar
  27. 27.
    Rojo S, Wagtmann N, Long EO. Binding of a soluble p70 killer cell inhibitory receptor to HLA-B*5101: requirement for all three p70 immunoglobulin domains. Eur J Immunol. 1997;27:568–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Gumperz JE, Barber LD, Valiante NM, et al. Conserved and variable residues within the Bw4 motif of HLA-B make separable contributions to recognition by the NKB1 killer cell-inhibitory receptor. J Immunol. 1997;158:5237–41.PubMedGoogle Scholar
  29. 29.
    Dohring C, Scheidegger D, Samaridis J, Cella M, Colonna M. A human killer inhibitory receptor specific for HLA-A1,2. J Immunol. 1996;156:3098–101.PubMedGoogle Scholar
  30. 30.
    Saulquin X, Gastinel LN, Vivier E. Crystal structure of the human natural killer cell activiating receptor KIR2DS2 (CD158j). J Exp Med. 2003;197:933–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Wilson MJ, Torkar M, Trowsdale J. Genomic organization of a human killer cell inhibitory receptor gene. Tissue Antigens. 1997;49:574–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Shilling HG, Guethlein LA, Cheng NW, et al. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol. 2002;168:2307–15.PubMedGoogle Scholar
  33. 33.
    Uhrberg M, Parham P, Wernet P. Definition of gene content for nine common group B haplotypes of the Caucasoid population: KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics 2002;54:221–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Valiante NM, Uhrberg M, Shilling HG, et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997;7:739–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Santourlidis S, Trompeter HI, Weinhold S, et al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol. 2002;169:4253–61.PubMedGoogle Scholar
  36. 36.
    Chan HW, Kurago ZB, Stewart CA, et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med. 2003;197:245–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Torkar M, Norgate Z, Colonna M, Trowsdale J, Wilson MJ. Isotypic variation of novel immunoglobulin-like transcript/killer cell inhibitory receptor loci in the leukocyte receptor complex.. Eur J Immunol. 1998;28:3959–67.PubMedCrossRefGoogle Scholar
  38. 38.
    Long EO, Barber DF, Burshtyn DN, et al. Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol Rev. 2001;181:223–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Leung W, Iyengar R, Triplett B, et al. Comparison of killer Ig-like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J Immunol. 2005;174:6540–5.PubMedGoogle Scholar
  40. 40.
    Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med. 1999;189:1093–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Goodridge JP, Witt CS, Christiansen FT, Warren HS. KIR2DL4 (CD158d) genotype influences expression and function in NK cells. J Immunol. 2003;171:1768–74.PubMedGoogle Scholar
  42. 42.
    Chang C, Rodriguez A, Carretero M, Lopez-Botet M, Phillips JH, Lanier LL. Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily. Eur J Immunol. 1995;25:2433–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Braud VM, Allan DS, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998;391:795–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med. 1998;187:813–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Glienke J, Sobanov Y, Brostjan C, et al. The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics 1998;48:163–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Sobanov Y, Glienke J, Brostjan C, Lehrach H, Francis F, Hofer E. Linkage of the NKG2 and CD94 receptor genes to D12S77 in the human natural killer gene complex. Immunogenetics 1999;49:99–105.PubMedCrossRefGoogle Scholar
  47. 47.
    Vales-Gomez M, Reyburn HT, Mandelboim M, Strominger JL. Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors. Immunity 1998;9:337–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. Embo J. 1999;18:4250–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Pende D, Parolini S, Pessino A, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999;190:1505–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Sivori S, Vitale M, Morelli L, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 1997;186:1129–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 1998;187:2065–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol. 2001;19:197–223.PubMedCrossRefGoogle Scholar
  53. 53.
    Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. [comment]. Science 1999;285:727–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Bahram S. MIC genes: from genetics to biology. Adv Immunol. 2000;76:1–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol. 2002;168:671–9.PubMedGoogle Scholar
  56. 56.
    Pende D, Cantoni C, Rivera P, et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol. 2001;31:1076–86.PubMedCrossRefGoogle Scholar
  57. 57.
    Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2:255–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA. 1999;96:6879–84.Google Scholar
  59. 59.
    Cantoni C, Bottino C, Vitale M, et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med. 1999;189:787–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Pessino A, Sivori S, Bottino C, et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med. 1998;188:953–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002;100:1935–47.PubMedCrossRefGoogle Scholar
  62. 62.
    Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 2007;110:433–40.PubMedCrossRefGoogle Scholar
  63. 63.
    Pando MJ, Gardiner CM, Gleimer M, McQueen KL, Parham P. The protein made from a common allele of KIR3DL1 (3DL*004) is poorly expressed at cell surfaces due to substitution at position 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol. 2003;171:6640–7.PubMedGoogle Scholar
  64. 64.
    Ortaldo JR, Young HA. Mouse Ly49 NK receptors: balancing activation and inhibition. Mol Immunol. 2005;42:445–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Cudkowicz G, Bennett M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med. 1971;134:1513–28.PubMedCrossRefGoogle Scholar
  66. 66.
    Murphy WJ, Kumar V, Bennett M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med. 1987;165:1212–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Yu YY, George T, Dorfman JR, Roland J, Kumar V, Bennett M. The role of Ly49A and 5E6(Ly49C) molecules in hybrid resistance mediated by murine natural killer cells against normal T cell blasts. Immunity 1996;4:67–76.PubMedCrossRefGoogle Scholar
  68. 68.
    Ogasawara K, Benjamin J, Takaki R, Phillips JH, Lanier LL. Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nat Immunol. 2005;6:938–45.PubMedCrossRefGoogle Scholar
  69. 69.
    Ruggeri L, Perruccio K, Montagnoli C, Romani L, Velardi A. NK cell conditioning to T cell replete mismatched BMT confers immediate responsiveness to infectious challenges. Bone Marrow Transplant. 2004;33:S18.Google Scholar
  70. 70.
    Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer call alloreactivity in mismatched hematopoietic transplants. Science 2002;295:2097–3100.PubMedCrossRefGoogle Scholar
  71. 71.
    O’Reilly RJ, Keever CA, Small TN, Brochstein J. The use of HLA-non-identical T-depleted marrow transplants for correction of severe combined immunodeficiency disease. Immunodefic Rev. 1989;1:273–309.PubMedGoogle Scholar
  72. 72.
    Reisner Y, Martelli M. Stem cell escalation enables HLA-disparate hematopoietic transplants in leukemia patients. Immunol Today. 1999;20:343–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Aversa F, Tabilio A, Terenzi A, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 1994;84:3948–55.PubMedGoogle Scholar
  74. 74.
    Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Aversa F, Velardi A, Tabilio A, Reisner Y, Martelli MF. Haploidentical stem cell transplantation in leukemia. Blood Rev. 2001;15:111–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999;94:333–9.PubMedGoogle Scholar
  78. 78.
    Velardi A, Ruggeri L, Alessandro, Moretta A, Moretta L. NK cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol. 2002;23:438–44.PubMedCrossRefGoogle Scholar
  79. 79.
    Caligiuri MA, Velardi A, Scheinberg DA, Borrello IM. Immunotherpeutic approaches for hematological malignancies. In: Hematology 2004, ASH Education Program Book. Washington: American Society of Hematology; 2004. p. 337–53.Google Scholar
  80. 80.
    Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A. Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol. 2005;17:211–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Velardi A, Moretta A. Role of natural killer cell alloreactivity in hematopoietic stem cell transplantation. In: Atkinson K, Fibbe W, Champlin R, Ljungman L, Ritz J, Brenner MK, editors. Clinical Bone Marrow and Blood Stem Cell Transplantation. Cambridge University Press; 2004. p. 247–61.Google Scholar
  82. 82.
    Salcedo M, Andersson M, Lemieux S, Van Kaer L, Chambers BJ, Ljunggren HG. Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class I-deficient mice. Eur J Immunol. 1998;28:1315–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Johansson MH, Bieberich C, Jay G, Karre K, Hoglund P. Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med. 1997;186:353–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol. 2004;5:996–1002.PubMedCrossRefGoogle Scholar
  85. 85.
    Raulet DH, Vance RE, McMahon CW. Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol. 2001;19:291–330.PubMedCrossRefGoogle Scholar
  86. 86.
    Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 2005;105:4416–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Kim S, Poursine-Laurent J, Truscott SM, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005;436:709–13.PubMedCrossRefGoogle Scholar
  88. 88.
    Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–50.PubMedGoogle Scholar
  89. 89.
    Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 2005;105:4878–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5:201–14.PubMedCrossRefGoogle Scholar
  91. 91.
    Bishara A, De Santis D, Witt CC, et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens. 2004;63:204–11.PubMedCrossRefGoogle Scholar
  92. 92.
    Gagne K, Brizard G, Gueglio B, et al. Relevance of KIR gene polymorphisms in bone marrow transplantation outcome. Hum Immunol. 2002;63:271–80.PubMedCrossRefGoogle Scholar
  93. 93.
    De Santis D, Bishara A, Witt CS, et al. Natural killer cell HLA-C epitopes and killer cell immunoglobulin-like receptors both influence outcome of mismatched unrelated donor bone marrow transplants. Tissue Antigens. 2005;65:519–28.PubMedCrossRefGoogle Scholar
  94. 94.
    Sun JY, Gaidulis L, Dagis A, et al. Killer Ig-like receptor (KIR) compatibility plays a role in the prevalence of acute GVHD in unrelated hematopoietic cell transplants for AML. Bone Marrow Transplant. 2005;36:525–30.PubMedCrossRefGoogle Scholar
  95. 95.
    Verheyden S, Schots R, Duquet W, Demanet C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia 2005;19:1446–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Geibel S, Locatelli F, Maccario R, et al. Survival advantage with KIR ligand incompatibility in unrelated donor transplantation. Blood 2003;102:814–9.CrossRefGoogle Scholar
  97. 97.
    Beelen DW, Ottinger HD, Ferencik S, et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood 2005;105:2594–600.PubMedCrossRefGoogle Scholar
  98. 98.
    Elmaagacli AH, Ottinger H, Koldehoff M, et al. Reduced risk for molecular disease in patients with chronic myeloid leukemia after transplantation from a KIR-mismatched donor. Transplantation 2005;79:1741–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Kroger N, Shaw B, Iacobelli S, et al. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol. 2005;129:631–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Davies SM, Ruggieri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 2002;100:3825–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Lowe EJ, Turner V, Handgretinger R, et al. T-cell alloreactivity dominates natural killer cell alloreactivity in minimally T-cell-depleted HLA-non-identical paediatric bone marrow transplantation. Br J Haematol. 2003;123:323–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Farag SS, Bacigalupo A, Eapen M, et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant. 2006;12:876–84.PubMedCrossRefGoogle Scholar
  103. 103.
    Bornhauser M, Schwerdtfeger R, Martin H, Frank KH, Theuser C, Ehninger G. Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood 2004;103:2860–1; author reply 2862.PubMedCrossRefGoogle Scholar
  104. 104.
    Schaffer M, Malmberg KJ, Ringden O, Ljunggren HG, Remberger M. Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation 2004;78:1081–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Kroger N, Binder T, Zabelina T, et al. Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation. Transplantation 2006;82:1024–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Hsu KC, Gooley T, Malkki M, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12:828–36.PubMedCrossRefGoogle Scholar
  107. 107.
    Miller JS, Cooley S, Parham P, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 2007;109:5058–61.PubMedCrossRefGoogle Scholar
  108. 108.
    Fischer JC, Ottinger H, Ferencik S, et al. Relevance of C1 and C2 epitopes for hemopoietic stem cell transplantation: role for sequential acquisition of HLA-C-specific inhibitory killer Ig-like receptor. J Immunol. 2007;178:3918–23.PubMedGoogle Scholar
  109. 109.
    Cooley S, McCullar V, Wangen R, et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood 2005;106:4370–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Loredana Ruggeri
    • 1
  • Shuhong Zhang
  • Sherif S. Farag
  1. 1.University of PerugiaItaly

Personalised recommendations