The Principles and Overview of Autologous Hematopoietic Stem Cell Transplantation

  • William Vaughan
  • Tara Seshadri
  • Mark Bridges
  • Armand Keating
Part of the Cancer Treatment and Research book series (CTAR, volume 144)


Autologous hematopoietic stem cell transplantation (HSCT) refers to the use of self-renewing progenitor cells derived either from the patient’s own marrow or peripheral blood, as opposed to cells from an allogeneic or syngeneic donor, to repopulate the hematopoietic system after administration of chemotherapy. This treatment modality enables very high (“myeloablative”) doses of chemotherapy to be administered in the hope of eradicating tumors while avoiding the serious side effect of prolonged myelosuppression or even marrow ablation. Autologous HSCT is best viewed as one step in the treatment strategy for malignant (usually hematological) diseases and not a therapeutic entity in itself.

Almost half a century has passed since the first report of the infusion of autologous bone marrow into a human to facilitate hematopoietic reconstitution following high-dose chemotherapy [1], although interest in the therapeutic use of marrow dates back much further. Brown-Sequard and...


Overall Survival Multiple Myeloma Acute Myeloid Leukemia Hematopoietic Stem Cell Transplantation Minimal Residual Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kurnick NB, Montano A, Gerdes JC, et al. Preliminary observations on the treatment of postirradiation hematopoietic depression in man by the infusion of autogenous bone marrow. Ann Intern Med. 1958;49:973–8.PubMedGoogle Scholar
  2. 2.
    Quine WE. The remedial application of bone marrow. JAMA 1896;26:1012–3.CrossRefGoogle Scholar
  3. 3.
    Schretzenmayr A. Anamiebehandlung mit knochemarksinjektionen. Klin Wochenschr. 1937;16:1010–2.CrossRefGoogle Scholar
  4. 4.
    Migdalska KZ. Special section—transplantation of bone marrow. Blood 1958;13:300–1.Google Scholar
  5. 5.
    Osgood EE, Riddle MC, Mathews TJ. Aplastic anemia treated with daily transfusions and intravenous marrow. Ann Intern Med. 1939;13:357–67.Google Scholar
  6. 6.
    Jacobson LO, Marks EK, Gaston EO, et al. Effect of spleen protection on mortality following x-irradiation. J Lab Clin Med. 1949;34:1538–43.Google Scholar
  7. 7.
    Jacobson LO, Simmons EL, Marks EK, et al. Recovery from radiation injury. Science 1951;113:510–1.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas ED, Lochte HL, Lu WC, et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257:491–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas ED, Lochte HL, Cannon JH, et al. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959;38:1709–16.PubMedCrossRefGoogle Scholar
  10. 10.
    McFarland W, Granville NB, Dameshek W. Autologous bone marrow infusion as an adjunct in therapy of malignant disease. Blood 1959;14:503–21.PubMedGoogle Scholar
  11. 11.
    McGovern JJ, Russell PS, Atkins L, et al. Treatment of terminal leukemic relapse by total-body irradiation and intravenous infusion of stored autologous bone marrow obtained during remission. N Engl J Med. 1959;260:675–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Newton KA, Humble JG, Wilson CW, et al. Total thoracic supervoltage irradiation followed by the intravenous infusion of stored autogenous marrow. Br Med J. 1959;1:531–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Appelbaum FR, Herzig GP, Ziegler JL. Successful engraftment of cryopreserved autologous bone marrow in patients with malignant lymphoma. Blood 1978;52:85–95.PubMedGoogle Scholar
  14. 14.
    Kurnick NB. Autologous and isologous bone marrow storage and infusion in the treatment of myelo-suppresson. Transfusion 1962;2:178–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Buckner CD, Rudolph RH, Fefer A. High dose cyclophosphamide therapy for malignant disease—Toxicity, tumor response, and effects of stored autologous marrow. Cancer 1972;29:357–65.CrossRefGoogle Scholar
  16. 16.
    McElwain TJ, Hedley DW, Burton G, et al. Marrow autotransplantation accelerates haematological recovery in patients with malignant melanoma treated with high-dose melphalan. Br J Cancer. 1979;40:72–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Aronin PA, Mahaley MS Jr, Rudnick SA, et al. Prediction of BCNU pulmonary toxicity in patients with malignant gliomas: an assessment of risk factors. N Engl J Med. 1980;303:183–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Herzig GP. Autologous marrow transplantation in cancer therapy. In: Brown EB, editor. Progress in hematology. New York: Grune and Stratton; 1981. p. 1–23.Google Scholar
  19. 19.
    Dicke KA, Zander A, Spitzer G, et al. Autologous bone-marrow transplantation in relapsed adult acute leukaemia. Lancet 1979;1:514–7.PubMedCrossRefGoogle Scholar
  20. 20.
    McCredie KB, Hersh EM, Freireich EJ. Cells capable of colony formation in the peripheral blood of man. Science 1971;171:293–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Goldman JM, Catovsky D, Hows J, et al. Cryopreserved peripheral blood cells functioning as autografts in patients with chronic granulocytic leukaemia in transformation. Br Med J. 1979;1:1310–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Juttner CA, To LB, Haylock DN, et al. Circulating autologous stem cells collected in very early remission from acute non-lymphoblastic leukaemia produce prompt but incomplete haemopoietic reconstitution after high dose melphalan or supralethal chemoradiotherapy. Br J Haematol. 1985;61:739–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Kessinger A, Armitage JO, Landmark JD, et al. Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp Hematol. 1986;14:192–6.PubMedGoogle Scholar
  24. 24.
    Korbling M, Dorken B, Ho AD, et al. Autologous transplantation of blood-derived hemopoietic stem cells after myeloablative therapy in a patient with Burkitt’s lymphoma. Blood 1986;67:529–32.PubMedGoogle Scholar
  25. 25.
    Kessinger A, Armitage JO, Landmark JD, et al. Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 1988;71:723–7.PubMedGoogle Scholar
  26. 26.
    Gianni AM, Siena S, Bregni M, et al. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet 1989;2:580–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Civin CI, Strauss LC, Brovall C, et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol. 1984;133:157–65.PubMedGoogle Scholar
  28. 28.
    Vogl DT, Stadtmauer EA. High-dose chemotherapy and autologous hematopoietic stem cell transplantation for metastatic breast cancer: a therapy whose time has passed. Bone Marrow Transplant. 2006;37:985–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med. 1995;333:1540–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Yuen AR, Rosenberg SA, Hoppe RT, et al. Comparison between conventional salvage therapy and high-dose therapy with autografting for recurrent or refractory Hodgkin’s disease. Blood 1997;89:814–22.PubMedGoogle Scholar
  31. 31.
    Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet 2002;359: 2065–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Français du Myélome. N Engl J Med. 1996;335:91–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med. 2003;348:1875–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Palumbo A, Bringhen S, Petrucci MT, et al. Intermediate-dose melphalan improves survival of myeloma patients aged 50 to 70: results of a randomized controlled trial. Blood 2004;104:3052–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Dreyling M, Lenz G, Hoster E, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood 2005;105:2677–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Schouten HC, Qian W, Kvaloy S, et al. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin’s lymphoma: results from the randomized European CUP trial. J Clin Oncol. 2003;21:3918–27.PubMedCrossRefGoogle Scholar
  37. 37.
    Gribben JG, Zahrieh D, Stephans K, et al. Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia. Blood 2005;106:4389–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Breems DA, Löwenberg B. Autologous stem cell transplatation in the treatment of adults with acute myeloid leukaemia. Br J Haematol 2005;130:825–33.Google Scholar
  39. 39.
    Nathan PC, Sung L, Crump M, et al. Consolidation therapy with autologous bone marrow transplantation in adults with acute myeloid leukemia: a meta-analysis. J Natl Cancer Inst. 2004;96:38–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Gratwohl A, Passweg J, Bocelli-Tyndall C, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 2005;35:869–79.Google Scholar
  41. 41.
    Chute JP. Stem cell homing. Curr Opin Hematol. 2006;13:399–406.PubMedCrossRefGoogle Scholar
  42. 42.
    Majolino I, Pearce R, Taghipour G, et al. Peripheral-blood stem-cell transplantation versus autologous bone marrow transplantation in Hodgkin’s and non-Hodgkin’s lymphomas: A new matched-pair analysis of the European Group for Blood and Marrow Transplantation Registry Data—Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 1997;15:509–17.PubMedGoogle Scholar
  43. 43.
    Mills W, Chopra R, McMillan A, et al. BEAM chemotherapy and autologous bone marrow transplantation for patients with relapsed or refractory non-Hodgkin’s lymphoma. J Clin Oncol. 1995;13:588–95.PubMedGoogle Scholar
  44. 44.
    Wheeler C, Strawderman M, Ayash L, et al. Prognostic factors for treatment outcome in autotransplantation of intermediate-grade and high-grade non-Hodgkin’s lymphoma with cyclophosphamide, carmustine, and etoposide. J Clin Oncol. 1993;11: 1085–91.PubMedGoogle Scholar
  45. 45.
    Philip T, Armitage JO, Spitzer G, et al. High-dose therapy and autologous bone marrow transplantation after failure of conventional chemotherapy in adults with intermediate-grade or high-grade non-Hodgkin’s lymphoma. N Engl J Med. 1987;316:1493–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Horning SJ, Chao NJ, Negrin RS, et al. High-dose therapy and autologous hematopoietic progenitor cell transplantation for recurrent or refractory Hodgkin’s disease: analysis of the Stanford University results and prognostic indices. Blood 1997;89:801–13.PubMedGoogle Scholar
  47. 47.
    Schot BW, Zijlstra JM, Sluiter WJ, et al. Early FDG-PET assessment in combination with clinical risk scores determines prognosis in recurring lymphoma. Blood 2007;109:486–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Olivieri AA, Santini GG, Patti CC, et al. Upfront high-dose sequential therapy (HDS) versus VACOP-B with or without HDS in aggressive non-Hodgkin’s lymphoma: long-term results by the NHLCSG. Ann Oncol. 2005;16:1941–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Vellenga E, van Putten WL, van 't Veer MB, et al. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: a prospective randomized HOVON trial. Blood 2008;111:537–43.PubMedCrossRefGoogle Scholar
  50. 50.
    Andersen NS, Pedersen L, Elonen E, et al. Primary treatment with autologous stem cell transplantation in mantle cell lymphoma: outcome related to remission pretransplant. Eur J Haematol. 2003;71:73–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Vandenberghe E, Ruiz de Elvira C, Loberiza FR, et al. Outcome of autologous transplantation for mantle cell lymphoma: a study by the European Blood and Bone Marrow Transplant and Autologous Blood and Marrow Transplant Registries. Br J Haematol. 2003;120:793–800.PubMedCrossRefGoogle Scholar
  52. 52.
    Lenz G, Dreyling M, Schiegnitz E, et al. Myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission prolongs progression-free survival in follicular lymphoma: results of a prospective, randomized trial of the German Low-Grade Lymphoma Study Group. Blood 2004;104:2667–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Rohatiner AZ, Nadler L, Davies AJ, et al. Myeloablative therapy with autologous bone marrow transplantation for follicular lymphoma at the time of second or subsequent remission: long-term follow-up. J Clin Oncol. 2007;25:2554–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Forstpointner R, Unterhalt M, Dreyling M, et al. Maintenance therapy with rituximab leads to a significant prolongation of response duration after salvage therapy with a combination of rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) in patients with recurring and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low Grade Lymphoma Study Group (GLSG). Blood 2006;108:4003–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Desikan R, Barlogie B, Sawyer J, et al. Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood 2000;95:4008–10.PubMedGoogle Scholar
  56. 56.
    Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106:2837–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Attal M, Harousseau JL, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349:2495–502.PubMedCrossRefGoogle Scholar
  58. 58.
    Yanada M, Matsuo K, Emi N, et al. Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission: a metaanalysis. Cancer 2005;103:1652–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Suciu S, Mandelli F, de Witte T, et al. Allogeneic compared with autologous stem cell transplantation in the treatment of patients younger than 46 years with acute myeloid leukemia (AML) in first complete remission (CR1): an intention-to-treat analysis of the EORTC/GIMEMAAML-10 trial. Blood 2003;102:1232–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study. Blood 2000;96:4075–83.PubMedGoogle Scholar
  61. 61.
    Burnett AK, Goldstone AH, Stevens RM, et al. Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. UK Medical Research Council Adult and Children’s Leukaemia Working Parties. Lancet 1998;351:700–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Specchia G, Pastore D, Mestice A, et al. Early and long-term engraftment after autologous peripheral stem cell transplantation in acute myeloid leukemia patients. Acta Haematol. 2006;116:229–37.PubMedCrossRefGoogle Scholar
  63. 63.
    Bensinger WI, Longin K, Appelbaum F, et al. Peripheral blood stem cells (PBSCs) collected after recombinant granulocyte colony stimulating factor (rhG-CSF): an analysis of factors correlating with the tempo of engraftment after transplantation. Br J Haematol. 1994;87:825–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Perry AR, Peniket AJ, Watts MJ, et al. Peripheral blood stem cell versus autologous bone marrow transplantation for Hodgkin’s disease: equivalent survival outcome in a single-centre matched-pair analysis. Br J Haematol. 1999;105:280–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Kottaridis PD, Peggs K, Schmitz N, et al. Survival and freedom from progression in autotransplant lymphoma patients is independent of stem cell source: further follow-up from the original randomised study to assess engraftment. Leuk Lymphoma. 2002;43:531–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Vose JM, Sharp G, Chan WC, et al. Autologous transplantation for aggressive non-Hodgkin’s lymphoma: results of a randomized trial evaluating graft source and minimal residual disease. J Clin Oncol. 2002;20:2344–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Richman CM, Weiner RS, Yankee RA. Increase in circulating stem cells following chemotherapy in man. Blood 1976;47:1031–9.PubMedGoogle Scholar
  68. 68.
    Nowrousian MR, Waschke S, Bojko P, et al. Impact of chemotherapy regimen and hematopoietic growth factor on mobilization and collection of peripheral blood stem cells in cancer patients. Ann Oncol. 2003;14:i29–36.PubMedCrossRefGoogle Scholar
  69. 69.
    Koç ON, Gerson SL, Cooper BW, et al. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte-macrophage colony-stimulating factor plus G-CSF. J Clin Oncol. 2000;18:1824–30.PubMedGoogle Scholar
  70. 70.
    Cashen AF, Nervi B, DiPersio J. AMD3100: CXCR4 antagonist and rapid stem cell-mobilizing agent. Future Oncol. 2007;3:19–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Stiff PJ. Management strategies for the hard-to-mobilize patient. Bone Marrow Transplant. 1999;23 Suppl 2:S29–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Facon T, Harousseau J-L, Maloisel F, et al. Stem cell factor in combination with filgrastim after chemotherapy improves peripheral blood progenitor cell yield and reduces apheresis requirements in multiple myeloma patients: a randomized, controlled trial. Blood 1999;94:1218–25.PubMedGoogle Scholar
  73. 73.
    Shpall EJ, Wheeler CA, Turner SA, et al. A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood 1999;93:2491–501.PubMedGoogle Scholar
  74. 74.
    da Silva MG, Pimentel P, Carvalhais A, et al. Ancestim (recombinant human stem cell factor, SCF) in association with filgrastim does not enhance chemotherapy and/or growth factor-induced peripheral blood progenitor cell (PBPC) mobilization in patients with a prior insufficient PBPC collection. Bone Marrow Transplant. 2004;34:683–91.PubMedCrossRefGoogle Scholar
  75. 75.
    Kroschinsky F, Kittner T, Mauersberger S, et al. Pelvic magnetic resonance imaging after bone marrow harvest—a retrospective study in 50 unrelated marrow donors. Bone Marrow Transplant. 2005;35:667–73.PubMedCrossRefGoogle Scholar
  76. 76.
    Lemoli RM, de Vivo A, Damiani D, et al. Autologous transplantation of granulocyte colony-stimulating factor-primed bone marrow is effective in supporting myeloablative chemotherapy in patients with hematologic malignancies and poor peripheral blood stem cell mobilization. Blood 2003;102:1595–600.PubMedCrossRefGoogle Scholar
  77. 77.
    Seshadri T, Al-Farsi K, Stakiw J, et al. Short and long term efficacy of autologous bone marrow cells to support intensive chemotherapy in patients failing peripheral blood stem cell mobilization. Blood 2007;110:(abstract #2999).Google Scholar
  78. 78.
    Reddy RL. Mobilization and collection of peripheral blood progenitor cells for transplantation. Transfus Apher Sci. 2005;32:63–72.PubMedCrossRefGoogle Scholar
  79. 79.
    Basquiera AL, Abichain P, Damonte JC, et al. The number of CD34(+) cells in peripheral blood as a predictor of the CD34(+) yield in patients going to autologous stem cell transplantation. J Clin Apheresis. 2006;21:92–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Armitage S, Hargreaves R, Samson D, et al. CD34 counts to predict the adequate collection of peripheral blood progenitor cells. Bone Marrow Transplant. 1997;20:587–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Berz D, McCormack EM, Winer ES, et al. Cryopreservation of hematopoietic stem cells. Am J Hematol. 2007;82:463–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Rivadeneyra-Espínoza L, Pérez-Romano B, González-Flores A, et al. Instrument- and protocol-dependent variation in the enumeration of CD34+ cells by flow cytometry. Transfusion 2006;46:530–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Jansen J, Thompson JM, Dugan MJ, et al. Peripheral blood progenitor cell transplantation. Ther Apheresis. 2002;6:5–14.CrossRefGoogle Scholar
  84. 84.
    Sumikuma T, Shimazaki C, Inaba T, et al. CD34+/CD90+ cells infused best predict late haematopoietic reconstitution following autologous peripheral blood stem cell transplantation. Br J Haematol. 2002;117:238–44.PubMedCrossRefGoogle Scholar
  85. 85.
    Millar BC, Millar JL, Shepherd V, Blackwell P, Porter H, Cunningham D, Judson I, Treleaven J, Powles RL, Catovsky D. The importance of CD34+/CD33 cells in platelet engraftment after intensive therapy for cancer patients given peripheral blood stem cell rescue. Bone Marrow Transplant. 1998;22:469–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Rowley SD, Feng Z, Chen L, et al. A randomized phase III clinical trial of autologous blood stem cell transplantation comparing cryopreservation using dimethylsulfoxide vs dimethylsulfoxide with hydroxyethylstarch. Bone Marrow Transplant. 2003;31:1043–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Klein MA, Kadidlo D, McCullough J, et al. Microbial contamination of hematopoietic stem cell products: incidence and clinical sequelae. Biol Blood Marrow Transplant. 2006;12:1142–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Kelly M, Roy DC, Labbe AC, et al. What is the clinical significance of infusing hematopoietic cell grafts contaminated with bacteria? Bone MarrowTransplant. 2006;38:183–8.CrossRefGoogle Scholar
  89. 89.
    Kamble R, Pant S, Selby GB, et al. Microbial contamination of hematopoietic progenitor cell grafts-incidence, clinical outcome, and cost-effectiveness: an analysis of 735 grafts. Transfusion 2005;45:874–8.PubMedCrossRefGoogle Scholar
  90. 90.
    FDA 21 CFR parts 16 a: Current good tissue practice for human cell, tissue and cellular and tissue-based products establishments; inspections and enforcement; final rule. Fed Regist. 2004;69:Docket No. 1997 N–484P.Google Scholar
  91. 91.
    Wannesson L, Panzarella T, Mikhael J, et al. Feasibility and safety of autotransplants with noncryopreserved marrow or peripheral blood stem cells: a systematic review. Ann Oncol. 2007;18:623–32.PubMedCrossRefGoogle Scholar
  92. 92.
    Brenner MK RD, Moen RC, Krance RA, Heslop HE, Mirro J, Anderson WF, Ihle JN. Gene marking and autologous bone marrow transplantation. Ann NY Acad Sci. 1994;31:204–14.CrossRefGoogle Scholar
  93. 93.
    Jacobsen E, Freedman A. B-cell purging in autologous stem-cell transplantation for non-Hodgkin lymphoma. Lancet Oncol. 2004;5:711–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Gianni AM, Magni M, Martelli M, et al. Long-term remission in mantle cell lymphoma following high-dose sequential chemotherapy and in vivo rituximab-purged stem cell autografting (R-HDS regimen). Blood 2003;102:749–55.PubMedCrossRefGoogle Scholar
  95. 95.
    Corradini P, Ladetto M, Zallio F, et al. Long-term follow-up of indolent lymphoma patients treated with high-dose sequential chemotherapy and autografting: evidence that durable molecular and clinical remission frequently can be attained only in follicular subtypes. J Clin Oncol. 2004;22:1460–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Schilder RJ, Johnson S, Gallo J, et al. Phase I trial of multiple cycles of high-dose chemotherapy supported by autologous peripheral-blood stem cells. J Clin Oncol. 1999;17:2198–207.PubMedGoogle Scholar
  97. 97.
    Norton L, Day R. Potential innovations in scheduling of cancer chemotherapy. In: DeVita VT, Hellman S, Rosenberg SA, editors. Important advances in oncology. Philadelphia: Lippincott; 1991. p. 57–72.Google Scholar
  98. 98.
    Josting A, Sieniawski M, Glossmann JP, et al. High-dose sequential chemotherapy followed by autologous stem cell transplantation in relapsed and refractory aggressive non-Hodgkin’s lymphoma: results of a multicenter phase II study. Ann Oncol. 2005;16:1359–65.PubMedCrossRefGoogle Scholar
  99. 99.
    Caballero MD, Rubio V, Rifon J, et al. BEAM chemotherapy followed by autologous stem cell support in lymphoma patients: analysis of efficacy, toxicity and prognostic factors. Bone Marrow Transplant. 1997;20:451–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Moreau P, Facon T, Attal M, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood 2002;99:731–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Kuruvilla J, Nagy T, Pintilie M, et al. Similar response rates and superior early progression-free survival with gemcitabine, dexamethasone, and cisplatin salvage therapy compared with carmustine, etoposide, cytarabine, and melphalan salvage therapy prior to autologous stem cell transplantation for recurrent or refractory Hodgkin lymphoma. Cancer 2006;106:353–60.PubMedCrossRefGoogle Scholar
  102. 102.
    Mollee P, Gupta V, Song K, et al. Long-term outcome after intensive therapy with etoposide, melphalan, total body irradiation and autotransplant for acute myeloid leukemia. Bone Marrow Transplant. 2004;33:1201–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Santos GW, Tutschka PJ, Brookmeyer R, et al. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med. 1983;309:1347–53.PubMedCrossRefGoogle Scholar
  104. 104.
    Socie G, Clift RA, Blaise D, et al. Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood 2001;98:3569–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Clift RA, Buckner CD, Thomas ED, et al. Marrow transplantation for chronic myeloid leukemia: a randomized study comparing cyclophosphamide and total body irradiation with busulfan and cyclophosphamide. Blood 1994;84:2036–43.PubMedGoogle Scholar
  106. 106.
    Stockerl-Goldstein KE, Horning SJ, Negrin RS, et al. Influence of preparatory regimen and source of hematopoietic cells on outcome of autotransplantation for non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 1996;2:76–85.PubMedGoogle Scholar
  107. 107.
    Caballero MD, Pérez-Simón JA, Iriondo A, et al. High-dose therapy in diffuse large cell lymphoma: results and prognostic factors in 452 patients from the GEL-TAMO Spanish Cooperative Group. Ann Oncol. 2003;14:140–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Lefrère F, Delmer A, Suzan F, et al. Sequential chemotherapy by CHOP and DHAP regimens followed by high-dose therapy with stem cell transplantation induces a high rate of complete response and improves event-free survival in mantle cell lymphoma: a prospective study. Leukemia 2002;16:587–93.PubMedCrossRefGoogle Scholar
  109. 109.
    Ferry C, Socié G. Busulfan-cyclophosphamide versus total body irradiation-cyclophosphamide as preparative regimen before allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia: what have we learned? Exp Hematol. 2003;31:1182–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Zenz T, Ritgen M, Dreger P, et al. Autologous graft-versus-host disease-like syndrome after an alemtuzumab-containing conditioning regimen and autologous stem cell transplantation for chronic lymphocytic leukemia. Blood 2006;108:2127–30.PubMedCrossRefGoogle Scholar
  111. 111.
    McDonnell AM, Lenz KL. Palifermin: role in the prevention of chemotherapy- and radiation-induced mucositis. Ann Pharmacother. 2007;41:86–94.PubMedGoogle Scholar
  112. 112.
    Dreger P, Rieger M, Seyfarth B, et al. Rituximab-augmented myeloablation for first-line autologous stem cell transplantation for mantle cell lymphoma: effects on molecular response and clinical outcome. Haematologica 2007;92:42–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Nademanee A, Forman S, Molina A, et al. A phase 1/2 trial of high-dose yttrium-90-ibritumomab tiuxetan in combination with high-dose etoposide and cyclophosphamide followed by autologous stem cell transplantation in patients with poor-risk or relapsed non-Hodgkin lymphoma. Blood 2005;106:2896–902.PubMedCrossRefGoogle Scholar
  114. 114.
    Vose JM, Bierman PJ, Enke C, et al. Phase I trial of iodine-131 tositumomab with high-dose chemotherapy and autologous stem-cell transplantation for relapsed non-hodgkin’s lymphoma. J Clin Oncol. 2005;23:461–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Strother D, Ashley D, Kellie SJ, et al. Feasibility of four consecutive high-dose chemotherapy cycles with stem-cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: results of a collaborative study. J Clin Oncol. 2001;19:2696–704.PubMedGoogle Scholar
  116. 116.
    George RE, Li S, Medeiros-Nancarrow C, et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol. 2006;24:2891–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Einhorn LH, Williams SD, Chamness A, et al. High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med. 2007;357:340–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Haioun C, Mounier N, Quesnel B, et al. Tandem autotransplant as first-line consolidative treatment in poor-risk aggressive lymphoma: a pilot study of 36 patients. Ann Oncol. 2001;12:1749–55.PubMedCrossRefGoogle Scholar
  119. 119.
    Ahmed T, Rashid K, Waheed F, et al. Long-term survival of patients with resistant lymphoma treated with tandem stem cell transplant. Leuk Lymphoma. 2005;46:405–14.PubMedCrossRefGoogle Scholar
  120. 120.
    Rizzo JD, Wingard JR, Tichelli A, et al. Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation: joint recommendations of the European Group for Blood and Marrow Transplantation, the Center for International Blood and Marrow Transplant Research, and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2006;12:138–51.PubMedCrossRefGoogle Scholar
  121. 121.
    Schimmer AD, Mah K, Bordeleau L, et al. Decreased bone mineral density is common after autologous blood or marrow transplantation. Bone Marrow Transplant. 2001;28:387–91.PubMedCrossRefGoogle Scholar
  122. 122.
    Díez-Campelo M, Pérez-Simón JA, González-Porras JR, et al. Quality of life assessment in patients undergoing reduced intensity conditioning allogeneic as compared to autologous transplantation: results of a prospective study. Bone Marrow Transplant. 2004;34:729–38.PubMedCrossRefGoogle Scholar
  123. 123.
    Metayer C, Curtis RE, Vose J, et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: a multicenter case-control study. Blood 2003;101:2015–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Hake CR, Graubert TA, Fenske TS. Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients? Bone Marrow Transplant. 2007;39:59–70.PubMedCrossRefGoogle Scholar
  125. 125.
    Jantunen E, Itälä M, Siitonen T, et al. Late non-relapse mortality among adult autologous stem cell transplant recipients: a nation-wide analysis of 1,482 patients transplanted in 1990-2003. Eur J Haematol. 2006;77:114–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Brugger W, Hirsch J, Grunebach F, et al. Rituximab consolidation after high-dose chemotherapy and autologous blood stem cell transplantation in follicular and mantle cell lymphoma: a prospective, multicenter phase II study. Ann Oncol. 2004;15:1691–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Maloney DG, Molina AJ, Sahebi F, et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003;102:3447–54.PubMedCrossRefGoogle Scholar
  128. 128.
    Bruno B, Rotta M, Patriarca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356:1110–20.PubMedCrossRefGoogle Scholar
  129. 129.
    Spielberger R, Stiff P, Bensinger W, et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med. 2004;351:2590–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Jantunen E, Salonen J, Juvonen E, et al. Invasive fungal infections in autologous stem cell transplant recipients: a nation-wide study of 1188 transplanted patients. Eur J Haematol. 2004;73:174–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Spitzer TR. Engraftment syndrome following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:893–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Jantunen E, Itala M, Lehtinen T, et al. Early treatment-related mortality in adult autologous stem cell transplant recipients: a nation-wide survey of 1482 transplanted patients. Eur J Haematol. 2006;76:245–50.PubMedCrossRefGoogle Scholar
  133. 133.
    Ljungman P, Engelhard D, de la Cámara R, et al. Vaccination of stem cell transplant recipients: recommendations of the Infectious Diseases Working Party of the EBMT. Bone Marrow Transplant. 2005;35:737–46.PubMedCrossRefGoogle Scholar
  134. 134.
    Somali M, Mpatakoias V, Avramides A, et al. Function of the hypothalamic-pituitary-gonadal axis in long-term survivors of hematopoietic stem cell transplantation for hematological diseases. Gynecol Endocrinol. 2005;21:18–26.PubMedCrossRefGoogle Scholar
  135. 135.
    Schimmer AD, Quatermain M, Imrie K, et al. Ovarian function after autologous bone marrow transplantation. J Clin Oncol. 1998;16:2359–63.PubMedGoogle Scholar
  136. 136.
    Brice P, Haioun C, André M, et al. Pregnancies after high-dose chemotherapy and autologous stem cell transplantation in aggressive lymphomas. Blood 2002;100:736.PubMedCrossRefGoogle Scholar
  137. 137.
    Schimmer AD, Ali V, Stewart AK, et al. Male sexual function after autologous blood or marrow transplantation. Biol Blood Marrow Transplant. 2001;7:279–83.PubMedCrossRefGoogle Scholar
  138. 138.
    Mihelic R, Kaufman JL, Lonial S. Maintenance therapy in multiple myeloma. Leukemia 2007.Google Scholar
  139. 139.
    Attal M, Harousseau J-L, Leyvraz S, et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood 2006;108:3289–94.PubMedCrossRefGoogle Scholar
  140. 140.
    Dhedin N, Dombret H, Thomas X, et al: Autologous stem cell transplantation in adults with acute lymphoblastic leukemia in first complete remission: analysis of the LALA-85, -87 and -94 trials. Leukemia 2005;20:336–44Google Scholar
  141. 141.
    Moore HCF, Green SJ, Gralow JR, et al. Intensive dose-dense compared with high-dose adjuvant chemotherapy for high-risk operable breast cancer: Southwest Oncology Group/Intergroup study 9623. J Clin Oncol. 2007;25:1677–82.Google Scholar
  142. 142.
    Peters WP, Rosner GL, Vredenburgh JJ, et al. Prospective, randomized comparison of high-dose chemotherapy with stem-cell support versus intermediate-dose chemotherapy after surgery and adjuvant chemotherapy in women with high-risk primary breast cancer: a report of CALGB 9082, SWOG 9114, and NCIC MA-13. J Clin Oncol. 2005;23: 2191–200Google Scholar
  143. 143.
    Schmid P, Schippinger W, Nitsch T, et al. Up-front tandem high-dose chemotherapy compared with standard chemotherapy with doxorubicin and paclitaxel in metastatic breast cancer: results of a randomized trial. J Clin Oncol. 2005;23:432–40.Google Scholar
  144. 144.
    Einhorn LH, Williams SD, Chamness A, et al. High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med. 2007;357:340–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • William Vaughan
    • 1
  • Tara Seshadri
  • Mark Bridges
  • Armand Keating
  1. 1.University of Alabama Bone Marrow Transplantation Program, University of Alabama Comprehensive Cancer CenterBirminghamUSA

Personalised recommendations