Radioimmunoconjugates in Hematopoietic Stem Cell Transplantation

  • Ajay K. Gopal
  • Jane N. Winter
Part of the Cancer Treatment and Research book series (CTAR, volume 144)


Hematopoietic stem cell transplantation (HSCT) has offered the promise of prolonged disease control and the potential for cure to patients with a variety of high-risk or relapsed hematologic malignancies including those with leukemia and lymphoma [1, 2, 3, 4, 5, 6, 7]. The rationale for administering high-dose therapy prior to HSCT is derived from the steep dose-response relationship between chemo-radiotherapy and tumor cell kill in the hematologic malignancies with the hypothesis that escalation of the dose beyond the marrow ablative threshold to the toxicity limits of nonhematopoietic organs can result in improved responses and longer remissions. This relationship of dose and response has been shown to be particularly striking with the use of radiation therapy. Data suggest that localized external beam radiation for the treatment of lymphoma in doses over 44 Gy yielded in-field relapses of 6% as compared to disease recurrence rates of 63% when doses less than 27 Gy were...


Hematopoietic Stem Cell Transplantation Mantle Cell Lymphoma Total Body Irradiation Allogeneic Hematopoietic Stem Cell Transplantation Autologous Hematopoietic Stem Cell Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Grant support: Lymphoma Research Foundation Mantle Cell Lymphoma Research Initiative, SCOR Grant 7040 from the Leukemia and Lymphoma Society, NIH grants P01CA44991 and CA060553.


  1. 1.
    Gulati S, Yahalom J, Acaba L, et al. Treatment of patients with relapsed and resistant non-Hodgkin’s lymphoma using total body irradiation, etoposide, and cyclophosphamide and autologous bone marrow transplantation. J Clin Oncol. 1992;10:936–41.PubMedGoogle Scholar
  2. 2.
    Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma (see comments). N Engl J Med. 1995;333:1540–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Schouten HC, Qian W, Kvaloy S, et al. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin’s lymphoma: results from the randomized European CUP trial. J Clin Oncol. 2003;21:3918–27.PubMedCrossRefGoogle Scholar
  4. 4.
    Dreyling M, Lenz G, Hoster E, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood 2005;105:2677–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Burnett AK, Goldstone AH, Stevens RM, et al. Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. UK Medical Research Council Adult and Children’s Leukaemia Working Parties. Lancet 1998;351:700–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Clift RA, Buckner CD, Appelbaum FR, et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood 1990;76:1867–71.PubMedGoogle Scholar
  7. 7.
    Bensinger WI, Clift R, Martin P, et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood 1996;88:2794–800.PubMedGoogle Scholar
  8. 8.
    Fuks Z, Kaplan HS. Recurrence rates following radiation therapy of nodular and diffuse malignant lymphomas. Radiology 1973;108:675–84.PubMedGoogle Scholar
  9. 9.
    Bordigoni P, Vernant JP, Souillet G, et al. Allogeneic bone marrow transplantation for children with acute lymphoblastic leukemia in first remission: a cooperative study of the Groupe d’Etude de la Greffe de Moelle Osseuse. J Clin Oncol. 1989;7:747–53.PubMedGoogle Scholar
  10. 10.
    Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med. 1993;329:459–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2001;19:3918–28.PubMedGoogle Scholar
  12. 12.
    Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352:441–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Press OW, Unger JM, Braziel RM, et al. A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I 131 tositumomab for previously untreated follicular non-Hodgkin lymphoma: Southwest Oncology Group Protocol S9911. Blood 2003;102:1606–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Witzig TE, White CA, Wiseman GA, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17:3793–803.PubMedGoogle Scholar
  15. 15.
    Witzig TE, White CA, Gordon LI, et al. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21:1263–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Tedder TF, Streuli M, Schlossman SF, Saito H. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci USA. 1988;85:208–12.Google Scholar
  18. 18.
    Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15:450–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Press OW, Howell-Clark J, Anderson S, Bernstein I. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood 1994;83:1390–7.PubMedGoogle Scholar
  20. 20.
    Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ. Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res. 1989;49:4906–12.PubMedGoogle Scholar
  21. 21.
    Press OW, Eary JF, Appelbaum FR, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support (see comments). N Engl J Med. 1993;329:1219–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Eary JF, Krohn KA, Press OW, Durack L, Bernstein ID. Importance of pre-treatment radiation absorbed dose estimation for radioimmunotherapy of non-Hodgkin’s lymphoma. Nucl Med Biol. 1997;24:635–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Press OW, Eary JF, Appelbaum FR, et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 1995;346:336–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Press OW, Eary JF, Gooley T, et al. A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 2000;96:2934–42.PubMedGoogle Scholar
  25. 25.
    Behr TM, Griesinger F, Riggert J, et al. High-dose myeloablative radioimmunotherapy of mantle cell non-Hodgkin lymphoma with the iodine-131-labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Results of a pilot study. Cancer 2002;94:1363–72.Google Scholar
  26. 26.
    Gopal AK, Gooley TA, Maloney DG, et al. High-dose radioimmunotherapy versus conventional high-dose therapy and autologous hematopoietic stem cell transplantation for relapsed follicular non-Hodgkin lymphoma: a multivariable cohort analysis. Blood 2003;102:2351–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Vose JM, Bierman PJ, Enke C, et al. Phase I trial of iodine-131 tositumomab with high-dose chemotherapy and autologous stem-cell transplantation for relapsed non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:461–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Vose J, Bierman P, Bociek G, et al. Radioimmunotherapy with 131-I tositumomab enhanced survival in good prognosis relapsed and high-risk diffuse large B-cell lymphoma (DLBCL) patients receiving high-dose chemotherapy and autologous stem cell transplantation. American Society of Clinical Oncology. Chicago: ASCO. J Clin Oncol. (Abstract 8013) 2007:18s.Google Scholar
  29. 29.
    Gopal AK, Rajendran JG, Gooley TA, et al. High-dose [131I]tositumomab (anti-CD20) radioimmunotherapy and autologous hematopoietic stem-cell transplantation for adults ≥60 years old with relapsed or refractory B-cell lymphoma. J Clin Oncol. 2007;25:1396–402.PubMedCrossRefGoogle Scholar
  30. 30.
    Gopal AK, Rajendran JG, Petersdorf SH, et al. High-dose chemo-radioimmunotherapy with autologous stem cell support for relapsed mantle cell lymphoma. Blood 2002;99:3158–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrucci PF, Vanazzi A, Grana CM, et al. High activity 90Y-ibritumomab tiuxetan (Zevalin) with peripheral blood progenitor cells support in patients with refractory/resistant B-cell non-Hodgkin lymphomas. Br J Haematol. 2007;139:590–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Vanazzi A, Ferrucci PF, Grana CM, et al. High dose 90yttrium ibritumomab tiuxetan with PBSC support in refractory-resistant NHL patients. Blood 2007;118:560a.Google Scholar
  33. 33.
    Devizzi L, Seregni E, Guidetti A, Forni C, et al. High-dose myeloablative Zevalin radioimmunotherapy with tandem stem-cell autografting has promising activity, minimal toxicity and full feasibility in an out-patient setting. Blood (ASH Annual Meeting Abstracts). 2006;108:3047.Google Scholar
  34. 34.
    Flinn IW, KB, Frey E, Bianco JA, Hammes RJ, Webb J, et al. Dose finding trial of yttrium 90 (90Y) ibritumomab tiuxetan with autologous stem cell transplantation (ASCT) in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma (NHL). J Clin Oncol (Suppl; ASCO Meeting Proceedings, Part 1, June 20, No. 185, Abstract 7535). 2006;24:7535.Google Scholar
  35. 35.
    Nademanee A, Forman S, Molina A, et al. A phase 1/2 trial of high-dose yttrium-90-ibritumomab tiuxetan in combination with high-dose etoposide and cyclophosphamide followed by autologous stem cell transplantation in patients with poor-risk or relapsed non-Hodgkin lymphoma. Blood 2005;106:2896–902.PubMedCrossRefGoogle Scholar
  36. 36.
    Nademanee A, Raubitschek A, Molina A, et al. Updated results of high-dose yttriun 90 (90Y) ibritumomab tiuxetan with high-dose etoposide (VP-16) and cyclophosphamide (CY) followed by autologous hematopoietic cell transplant (AHSCT) for poor-risk or refractory B-cell non-Hodgkin’s lymphoma. Blood (ASH Annual Meeting Abstracts), Nov 2007;110:1891.Google Scholar
  37. 37.
    Winter JN, Inwards D, Spies S, et al. 90-Y Ibritumumab tiuxetan (Zevalin®, 90YZ) Doses Calculated to deliver up to 1500cGY to critical organs may be safely combined with high-dose BEAM and autotransplant in NHL. Blood (ASH Annual Meeting Abstracts, 2006;330).Google Scholar
  38. 38.
    Gisselbrecht C, Decaudin D, Mounier N, Tilly H, et al. 90Yttrium ibritumomab tiuxetan (Zevalin) combined with BEAM (Z-BEAM) conditioning regimen plus autologous stem cell transplantation in relapsed or refractory follicular lymphoma. GELA Phase II Study. Blood (ASH Annual Meeting Abstracts), Nov 2007;110:22.Google Scholar
  39. 39.
    Krishnan A, Nademanee A, Fung HC, et al. Phase II trial of a transplantation regimen of yttrium-90 ibritumomab tiuxetan and high-dose chemotherapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26:90–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Khouri IF, Saliba RM, Hosing C, Valverde R, et al. Efficacy and safety of yttrium 90 (90Y) ibritumomab tiuxetan in autologous and nonmyeloablative stem cell transplantation (NST) for relapsed non-Hodgkin’s lymphoma (NHL). Blood (ASH Annual Meeting Abstracts), Nov 2006;108:315.Google Scholar
  41. 41.
    Shimoni A, Zwas ST, Oksman Y, et al. Yttrium-90-ibritumomab tiuxetan (Zevalin) combined with high-dose BEAM chemotherapy and autologous stem cell transplantation for chemo-refractory aggressive non-Hodgkin’s lymphoma. Exp Hematol. 2007;35:534–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Gopal AK, Rajendran JG, Pagel JM, et al. A phase II trial of 90Y-ibritumomab tiuxetan-based reduced intensity allogeneic peripheral blood stem cell (PBSC) transplantation for relapsed CD20+ B-cell non-Hodgkin’s lymphoma (NHL). Blood (ASH Annual Meeting Abstracts), Nov 2006; 108:316.Google Scholar
  43. 43.
    Shimoni A, Zwas ST, Oksman Y, et al. Ibritumomab tiuxetan (Zevalin) combined with reduced-intensity conditioning and allogeneic stem-cell transplantation (SCT) in patients with chemorefractory non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2008 Feb, 41(4):355–361. Epub 2007 Nov 19.Google Scholar
  44. 44.
    Atkinson JB, Mahoney FJ, Schwartz IR, Hesch JA. Therapy of acute leukemia by whole-body irradiation and bone marrow transplantation from an identical normal twin. Blood 1959;14:228–34.PubMedGoogle Scholar
  45. 45.
    Ringden O, Ruutu T, Remberger M, et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic Bone Marrow Transplantation Group. Blood 1994;83:2723–30.PubMedGoogle Scholar
  46. 46.
    Appelbaum FR, Matthews DC, Eary JF, et al. The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 1992;54:829–33.PubMedCrossRefGoogle Scholar
  47. 47.
    Press OW, Shan D, Howell-Clark J, et al. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res. 1996;56:2123–9.PubMedGoogle Scholar
  48. 48.
    Poppema S, Lai R, Visser L, Yan XJ. CD45 (leucocyte common antigen) expression in T and B lymphocyte subsets. Leuk Lymphoma. 1996;20:217–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakano A, Harada T, Morikawa S, Kato Y. Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathol Jpn. 1990;40:107–15.PubMedGoogle Scholar
  50. 50.
    Matthews DC, Appelbaum FR, Eary JF, et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999;94:1237–47.PubMedGoogle Scholar
  51. 51.
    Pagel JM, Appelbaum FR, Eary JF, et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 2006;107:2184–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Jurcic JG, Caron PC, Nikula TK, et al. Radiolabeled anti-CD33 monoclonal antibody M195 for myeloid leukemias. Cancer Res. 1995;55:5908s–10s.PubMedGoogle Scholar
  53. 53.
    Matthews DC, Martin PJ, Nourigat C, Appelbaum FR, Fisher DR, Bernstein ID. Marrow ablative and immunosuppressive effects of 131I-anti-CD45 antibody in congenic and H2-mismatched murine transplant models. Blood 1999;93:737–45.PubMedGoogle Scholar
  54. 54.
    Bunjes D, Buchmann I, Duncker C, et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I–II study. Blood 2001;98:565–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Burke JM, Caron PC, Papadopoulos EB, et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant. 2003;32:549–56.PubMedCrossRefGoogle Scholar
  56. 56.
    Pagel J, Appelbaum F, Rajendran J, et al. 131I-anti-CD45 antibody plus fludarabine, low-dose TBI and PBSC infusion for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 2005;106:119a.Google Scholar
  57. 57.
    Ringhoffer M, Blumstein N, Neumaier B, et al. 188Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukaemia or myelodysplastic syndrome over the age of 55: results of a phase I–II study. Br J Haematol. 2005;130:604–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Krishnan AY, Palmer JM, Bhatia SC, et al. The impact of incorporating targeted radioimmunotherapy (RIT) into transplant preparative regimens on the incidence of therapy related myelodysplasia (t-MDS) or AML (t-AML) following autologous stem cell transplant (ASCT) for lymphoma. Blood (ASH Annual Meeting Abstracts). 2007;110:1082.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Medical Oncology, Department of MedicineUniversity of Washington and Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations