Skin Immune System

  • Jan D. Bos
  • Rosalie M. Luiten
Part of the Cancer Treatment and Research book series (CTAR, volume 146)

The skin is, in weight, the largest organ of the human body. Its primary role is that of a physical and biological barrier. This principal function is most apparent in the skin’s relative lack of permeability for agents from outside, including microbes and parasites, but also for water and water-soluble compounds. The resistance to exogenous influences is mainly the result of the physicochemical properties of its outermost layer, the corneal layer of the epidermis (stratum corneum). In addition to its function as a barrier against potentially harmful outside effects, the skin also serves to maintain the homeostasis of the “milieu intùrieure” by preventing desiccation.


Dendritic Cell Basal Cell Carcinoma Immature Dendritic Cell Normal Human Skin Dendritic Cell Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silverstein AM. A History of Immunology. San Diego: Academic Press, 1989.Google Scholar
  2. 2.
    Fichtelius KE, Groth O, Liden S. The skin, a first level lymphoid organ? Int Arch Allergy 1970; 37:607–20.PubMedGoogle Scholar
  3. 3.
    Streilein JW. Lymphocyte traffic, T cell malignancies and the skin. J Invest Dermatol 1978; 71:167–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Streilein JW. Skin-associated lymphoid tissues (SALT): the next generation. In: Bos JD (ed) Skin Immune System (SIS), 1st edn. Boca Raton: CRC Press, 1990:25–48.Google Scholar
  5. 5.
    Vroom ThA, Bos JD, Borst J. Epithelial homing of gamma/delta T cells? Nature 1989; 341:113–4.CrossRefGoogle Scholar
  6. 6.
    Bos JD, Teunissen MBM, Cairo I, Krieg SR, Kapsenberg ML, Das PK, Borst J. T cell receptor gamma/delta bearing cells in normal human skin. J Invest Dermatol 1990; 94:37–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Bos JD, Kapsenberg ML. The skin immune system (SIS): its cellular constituents and their interactions. Immunol Today 1986; 7:235–40.CrossRefGoogle Scholar
  8. 8.
    Bos JD (ed) Skin Immune System (SIS), 1st edn. Boca Raton: CRC Press, 1990.Google Scholar
  9. 9.
    Bos JD (ed) Skin Immune System (SIS): Cutaneous Immunology and Clinical Immunodermatology, 2nd edn. Boca Raton: CRC Press, 1997.Google Scholar
  10. 10.
    Bos JD (ed) Skin Immune System (SIS): Cutaneous Immunology and Clinical Immunodermatology, 3rd edn. Boca Raton: CRC Press, 2005.Google Scholar
  11. 11.
    Sontheimer RD. Perivascular dendritic macrophages as immunobiological constituents of the human dermal perivascular unit. J Invest Dermatol 1989; 93:96S-101S.PubMedCrossRefGoogle Scholar
  12. 12.
    Nickoloff BJ (ed). Dermal Immune System. Boca Raton: CRC Press, 1993.Google Scholar
  13. 13.
    Teunissen MB, Piskin G, di Nuzzo S, Sylva-Steenland RM, de Rie MA, Bos JD. Ultraviolet B radiation induces a transient appearance of IL-4+ neutrophils, which support the development of Th2 responses. J Immunol 2002; 168:3732–9.PubMedGoogle Scholar
  14. 14.
    Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004; 4:211–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Asahina A, Tamaki K. Role of Langerhans cells in cutaneous protective immunity: Is the reappraisal necessary? J Dermatol Sci 2006; 44:1–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Clydesdale GJ, Dandie GW, Muller HK. Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 2001; 79:547–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Xiao BG, Huang YM, Link H. Tolerogenic dendritic cells: the ins and outs of outcome. J Immunother 2006; 29:465–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS. The vast majority of CLA+ T cells are resident in normal skin. J Immunol 2006; 176:4431–9.PubMedGoogle Scholar
  20. 20.
    Bos JD, Zonneveld I, Das PK, Krieg SR, Van der Loos ChM, Kapsenberg ML. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol 1987; 88:569–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Santamaria-Babi LF. CLA(+) T cells in cutaneous diseases. Eur J Dermatol 2004; 14:13–8.PubMedGoogle Scholar
  22. 22.
    Dudda JC, Simon JC, Martin S. Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J Immunol 2004; 172:857–63.PubMedGoogle Scholar
  23. 23.
    Gutgesell C, Heise S, Seubert A, Stichtenoth DO, Fröhlich JC, Neumann C. Comparison of different activity parameters in atopic dermatitis: correlation with clinical scores. Br J Dermatol 2002; 147:914–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298:850–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Schadendorf D, Paschen A, Eichmüller S. Immunological strategies to fight skin cancer. In: Bos JD (ed) Skin Immune System (SIS): Cutaneous Immunology and Clinical Immunodermatology. Boca Raton: CRC Press, 2005:745–70.Google Scholar
  26. 26.
    Luiten RM, Kueter EW, Mooi W, Gallee MP, Rankin EM, Gerritsen WR, Clift SM, Nooijen WJ, Weder P, van de Kasteele WF, Sein J, van den Berk PC, Nieweg OE, Berns AM, Spits H, de Gast GC. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 2005; 23:8978–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Ullrich SE, Kripke ML. Mechanisms in the suppression of tumor rejection produced in mice by repeated UV irradiation. J Immunol 1984; 133:2786–90.PubMedGoogle Scholar
  28. 28.
    Schwarz T. Regulatory T cells induced by ultraviolet radiation. Int Arch Allergy Immunol 2005; 137:187–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Stoebner PE, Rahmoun M, Ferrand C, Meunier L, Yssel H, Pene J. A single sub-erythematous exposure of solar-simulated radiation on the elicitation phase of contact hypersensitivity induces IL-10-producing T-regulatory cells in human skin. Exp Dermatol 2006; 15: 615–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoshida Y, Aozasa K. Malignancies in organ transplant recipients. Pathol Int 2004; 54:649–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Buell JF, Gross TG, Woodle ES. Malignancy after transplantation. Transplantation 2005; 80 (2 Suppl): S254–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilkins K, Turner R, Dolev JC, LeBoit PE, Berger TG, Maurer TA. Cutaneous malignancy and human immunodeficiency virus disease. J Am Acad Dermatol 2006; 54:189–206.PubMedCrossRefGoogle Scholar
  33. 33.
    Muller HK, Halliday GM, Woods GM. The skin immune system and tumor immunosurveillance. In: Bos JD (ed) Skin Immune System (SIS): Cutaneous Immunology and Clinical Immunodermatology. Boca Raton: CRC Press, 2005:475–94.Google Scholar
  34. 34.
    Parmiani G. An explanation of the variable clinical response to interleukin 2 and LAK cells. Immunol Today 1990; 11:113–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Boon T, Coulie PG, Van den Eynde BJ, Van der Bruggen B. Human T cell responses against melanoma. Annu Rev Immunol 2006; 24:175–208.PubMedCrossRefGoogle Scholar
  36. 36.
    Gogas H, Ioannovich J, Dafni U, Stavropoulou-Giokas C, Frangia K, Tsoutsos D, Panagiotou P, Polyzos A, Papadopoulos O, Stratigos A, Markopoulos C, Bafaloukos D, Pectasides D, Fountzilas G, Kirkwood JM. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 2006; 354:709–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10:475–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Vermi W, Bonecchi R, Facchetti F, Bianchi D, Sozzani S, Festa S, Berenzi A, Cella M, Colonna M. Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 2003; 200:255–68.PubMedCrossRefGoogle Scholar
  39. 39.
    de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJ. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 2003; 9:5091–100.PubMedGoogle Scholar
  40. 40.
    van Mierlo GJ, Boonman ZF, Dumortier HM, den Boer AT, Fransen MF, Nouta J, van der Voort EI, Offringa R, Toes RE, Melief CJ. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol 2004; 173: 6753–9.PubMedGoogle Scholar
  41. 41.
    Furumoto K, Soares L, Engleman EG, Merad M. Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J Clin Invest 2004; 113:774–83.PubMedGoogle Scholar
  42. 42.
    Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P. Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004; 64:5934–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6:715–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388:190–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 1999; 190:1033–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Ugurel S, Seiter S, Rappl G, Stark A, Tilgen W, Reinhold U. Heterogeneous susceptibility to CD95-induced apoptosis in melanoma cells correlates with bcl-2 and bcl-x expression and is sensitive to modulation by interferon-gamma. Int J Cancer 1999; 82:727–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M, Peretz T, Mandelboim O, Ben Yehuda D. Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res 2003; 63:6340–9.PubMedGoogle Scholar
  48. 48.
    Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409:207–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Lord SJ, Rajotte RV, Korbutt GS, Bleackley RC. Granzyme B: a natural born killer. Immunol Rev 2003; 193:31–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Bird CH, Sutton VR, Sun J, Hirst CE, Novak A, Kumar S, Trapani JA, Bird PI. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol 1998; 18:6387–98.PubMedGoogle Scholar
  51. 51.
    Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI. A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem 1996; 271:27802–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A 2001; 98:11515–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Bos JD. Skin immune system (SIS). In: Bos JD (ed) Skin Immune System (SIS): Cutaneous Immunology and Clinical Immunodermatology. Boca Raton: CRC Press, 2005:3–17.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jan D. Bos
    • 1
  • Rosalie M. Luiten
    • 2
  1. 1.Department of DermatologyAcademic Medical Center, University of Amsterdam1100 DE, AmsterdamThe Netherlands
  2. 2.Department of DermatologyNetherlands Institute for Pigment Disorders, Academic Medical Center, University of Amsterdam1005 AZ AmsterdamThe Netherlands

Personalised recommendations