Advertisement

New Trends in the Susceptibility to Melanoma

  • Nadem Soufir
  • Bernard Grandchamp
  • Nicole Basset-Seguin
Part of the Cancer Treatment and Research book series (CTAR, volume 146)

In contrast with cutaneous squamous cell carcinomas, the risk for development of melanoma does not appear to be greatly increased after solid organ transplantation, except for the rare case of donor-derived melanoma. The clinical aspects of melanoma in organ transplant recipients are discussed elsewhere, but it would seem that genetic susceptibility to melanoma is likely to be of similar relevance to the immunosuppressed individual as to the immunocompetent individual. Because the outcome of melanoma, particularly thicker melanomas, is worse after transplantation (Matin et al., in press), patients who come from melanoma-prone families or who have a history of multiple melanomas must be carefully counselled before transplantation. Extremely close skin surveillance and a low threshold for biopsy of melanocytic lesions would be advisable.

Keywords

Melanoma Risk CDKN2A Gene Melanoma Case Oculocutaneous Albinism CDKN2A Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greene MH. The genetics of hereditary melanoma and nevi. 1998 update. Cancer 1999; 86(11 Suppl):2464–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, et al. Germline p16 mutations in familial melanoma. Nat Genet 1994; 8(1):15–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994; 8(1):23–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996; 12(1):97–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2(10):731–7. Available from http://www.ncbi.nlmnih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11584300.Google Scholar
  6. 6.
    Hayward NK. Genetics of melanoma predisposition. Oncogene 2003; 22(20):3053–62. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12789280.Google Scholar
  7. 7.
    Newton Bishop JA, Bishop DT. The genetics of susceptibility to cutaneous melanoma. Drugs Today (Barc) 2005;41(3):193–203. Available from http://www.ncbi.nlm.nih.gov/ entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation& list_uids=15883616.
  8. 8.
    Soufir N, Avril MF, Chompret A, Demenais F, Bombled J, Spatz A, et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 1998; 7(2):209–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Holland EA, Schmid H, Kefford RF, Mann GJ. CDKN2A (P16(INK4a)) and CDK4 mutation analysis in 131 Australian melanoma probands: effect of family history and multiple primary melanomas. Genes Chromosomes Cancer 1999; 25(4):339–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Bishop DT, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet 2006. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16905682
  11. 11.
    Goldstein AM, Fraser MC, Struewing JP, Hussussian CJ, Ranade K, Zametkin DP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations [see comments]. N Engl J Med 1995; 333(15):970–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Monzon J, Liu L, Brill H, Goldstein AM, Tucker MA, From L, et al. CDKN2A mutations in multiple primary melanomas. N Engl J Med 1998; 338(13):879–87.PubMedCrossRefGoogle Scholar
  13. 13.
    MacKie RM, Andrew N, Lanyon WG, Connor JM. CDKN2A germline mutations in U.K. patients with familial melanoma and multiple primary melanomas. J Invest Dermatol 1998; 111(2):269–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Hashemi J, Platz A, Ueno T, Stierner U, Ringborg U, Hansson J. CDKN2A germ-line mutations in individuals with multiple cutaneous melanomas. Cancer Res 2000; 60(24):6864–7.PubMedGoogle Scholar
  15. 15.
    Auroy S, Avril MF, Chompret A, Pham D, Goldstein AM, Bianchi-Scarra G, et al. Sporadic multiple primary melanoma cases: CDKN2A germline mutations with a founder effect. Genes Chromosomes Cancer 2001; 32(3):195–202.PubMedCrossRefGoogle Scholar
  16. 16.
    Aitken J, Welch J, Duffy D, Milligan A, Green A, Martin N, et al. CDKN2A variants in a population-based sample of Queensland families with melanoma. J Natl Cancer Inst 1999; 91:446–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Molven A, Grimstvedt MB, Steine SJ, Harland M, Avril MF, Hayward NK, et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer 2005; 44(1):10–8. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15880589.
  18. 18.
    Soufir N, Ollivaud L, Bertrand G, Lacapere JJ, Descamps V, Vitoux D, et al. A French CDK4-positive melanoma family with a co-inherited EDNRB mutation. J Dermatol Sci 2007; 46(1): 61–4. Available fromhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list uids=17223014.Google Scholar
  19. 19.
    Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269(5228):1281–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Coleman KG, Wautlet BS, Morrissey D, Mulheron J, Sedman SA, Brinkley P, et al. Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J Biol Chem 1997; 272(30):18869–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92(6):725–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Bahuau M, Vidaud D, Jenkins RB, Bieche I, Kimmel DW, Assouline B, et al. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 1998; 58(11):2298–303.PubMedGoogle Scholar
  23. 23.
    Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E, Aveyard J, et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001; 10(1):55–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Harland M, Taylor CF, Bass S, Churchman M, Randerson-Moor JA, Holland EA, et al. Intronic sequence variants of the CDKN2A gene in melanoma pedigrees. Genes Chromosomes Cancer 2005; 43(2):128–36. Available from http://www.ncbi.nlm.nih.gov/ entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15761864.Google Scholar
  25. 25.
    Laud K, Marian C, Avril MF, Barrois M, Chompret A, Goldstein AM, et al. Comprehensive analysis of CDKN2A (p16INK4A/p14ARF) and CDKN2B genes in 53 melanoma index cases considered to be at heightened risk of melanoma. J Med Genet 2006;43(1):39–47. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db= PubMed&dopt=Citation&list_uids=15937071.Google Scholar
  26. 26.
    Rizos H, Darmanian AP, Holland EA, Mann GJ, Kefford RF. Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J Biol Chem 2001; 276(44):41424–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 2002; 94(12):894–903.PubMedGoogle Scholar
  28. 28.
    Goldstein AM, Martinez M, Tucker MA, Demenais F. Gene-covariate interaction between dysplastic nevi and the CDKN2A gene in American melanoma-prone families. Cancer Epidemiol Biomarkers Prev 2000; 9(9):889–94.PubMedGoogle Scholar
  29. 29.
    Chaudru V, Chompret A, Bressac-de Paillerets B, Spatz A, Avril MF, Demenais F. Influence of genes, nevi, and sun sensitivity on melanoma risk in a family sample unselected by family history and in melanoma-prone families. J Natl Cancer Inst 2004; 96(10):785–95. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt= Citation&list_uids=15150307.Google Scholar
  30. 30.
    van Der Velden PA, Sandkuijl LA, Bergman W, Pavel S, van Mourik L, Frants RR, et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am J Hum Genet 2001; 69:4.Google Scholar
  31. 31.
    Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 2001;69:4.CrossRefGoogle Scholar
  32. 32.
    Chaudru V, Laud K, Avril MF, Miniere A, Chompret A, Bressac-de Paillerets B, et al. Melanocortin-1 receptor (MC1R) gene variants and dysplastic nevi modify penetrance of CDKN2A mutations in French melanoma-prone pedigrees. Cancer Epidemiol Biomarkers Prev 2005; 14(10):2384–90. Available from http://www.ncbi.nlm.nih.gov/ entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16214921.
  33. 33.
    Chhajlani V. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol Biol Int 1996; 38(1):73–80.PubMedGoogle Scholar
  34. 34.
    Frandberg PA, Doufexis M, Kapas S, Chhajlani V. Human pigmentation phenotype: a point mutation generates nonfunctional MSH receptor. Biochem Biophys Res Commun 1998; 245(2):490–2.PubMedCrossRefGoogle Scholar
  35. 35.
    Schioth HB, Phillips SR, Rudzish R, Birch-Machin MA, Wikberg JE, Rees JL. Loss of function mutations of the human melanocortin 1 receptor are common and are associated with red hair. Biochem Biophys Res Commun 1999; 260(2):488–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Jimenez-Cervantes C, Germer S, Gonzalez P, Sanchez J, Sanchez CO, Garcia-Borron JC. Thr40 and Met122 are new partial loss-of-function natural mutations of the human melanocortin 1 receptor. FEBS Lett 2001; 508(1):44–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Jimenez-Cervantes C, Olivares C, Gonzalez P, Morandini R, Ghanem G, Garcia-Borron JC. The Pro162 variant is a loss-of-function mutation of the human melanocortin 1 receptor gene. J Invest Dermatol 2001; 117(1):156–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Healy E, Jordan SA, Budd PS, Suffolk R, Rees JL, Jackson IJ. Functional variation of MC1R alleles from red-haired individuals. Hum Mol Genet 2001; 10(21):2397–402.PubMedCrossRefGoogle Scholar
  39. 39.
    Ringholm A, Klovins J, Rudzish R, Phillips S, Rees JL, Schioth HB. Pharmacological characterization of loss of function mutations of the human melanocortin 1 receptor that are associated with red hair. J Invest Dermatol 2004; 123(5):917–23. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation &list_uids=15482480.
  40. 40.
    Sturm RA. Skin colour and skin cancer: MC1R, the genetic link. Melanoma Res 2002; 12(5):405–16.PubMedCrossRefGoogle Scholar
  41. 41.
    Rees JL. The genetics of sun sensitivity in humans. Am J Hum Genet 2004; 75(5):739–51. Available from http://www.ncbi.nlm.nih.gov/entrez/queryfcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15372380.Google Scholar
  42. 42.
    Sturm RA, Duffy DL, Box NF, Chen W, Smit DJ, Brown DL, et al. The role of melanocortin-1 receptor polymorphism in skin cancer risk phenotypes. Pigment Cell Res 2003; 16(3):266–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Palmer JS, Duffy DL, Box NF, Aitken JF, O’Gorman LE, Green AC, et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet 2000; 66(1):176–86.PubMedCrossRefGoogle Scholar
  44. 44.
    Kennedy C, ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol 2001; 117(2):294–300. Available from http://www.ncbi.nlm.nih.gov/ entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11511307.
  45. 45.
    Matichard E, Verpillat P, Meziani R, Gerard B, Descamps V, Legroux E, et al. Melanocortin 1 receptor (MC1R) gene variants may increase the risk of melanoma in France independently of clinical risk factors and UV exposure. J Med Genet 2004; 41(2):e13. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation &list_uids=14757863.
  46. 46.
    Stratigos AJ, Dimisianos G, Nikolaou V, Poulou M, Sypsa V, Stefanaki I, et al. Melanocortin receptor-1 gene polymorphisms and the risk of cutaneous melanoma in a low-risk southern European population. J Invest Dermatol 2006; 126: 1842–1849. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt= Citation&list_uids=16601669.
  47. 47.
    Landi MT, Kanetsky PA, Tsang S, Gold B, Munroe D, Rebbeck T, et al. MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J Natl Cancer Inst 2005; 97(13):998–1007. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15998953.Google Scholar
  48. 48.
    Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science 2006; 313(5786):521–2. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16809487.Google Scholar
  49. 49.
    Lee ST, Nicholls RD, Bundey S, Laxova R, Musarella M, Spritz RA. Mutations of the P gene in oculocutaneous albinism, ocular albinism, and Prader–Willi syndrome plus albinism. N Engl J Med 1994; 330(8):529–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Li C, Liu Z, Wang LE, Strom SS, Lee JE, Gershenwald JE, et al. Genetic variants of the ADPRT, XRCC1, and APE1 genes and risk of cutaneous melanoma. Carcinogenesis 2006;27(9):1894–901. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16621887.Google Scholar
  51. 51.
    Baccarelli A, Calista D, Minghetti P, Marinelli B, Albetti B, Tseng T, et al. XPD gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk. Br J Cancer 2004; 90(2):497–502. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14735199.Google Scholar
  52. 52.
    Han J, Colditz GA, Liu JS, Hunter DJ. Genetic variation in XPD, sun exposure, and risk of skin cancer. Cancer Epidemiol Biomarkers Prev 2005; 14(6):1539–44. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation &list_uids=15941969.Google Scholar
  53. 53.
    Millikan RC, Hummer A, Begg C, Player J, de Cotret AR, Winkel S, et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis 2006; 27(3):610–8. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation &list_uids=16258177.Google Scholar
  54. 54.
    Blankenburg S, Konig IR, Moessner R, Laspe P, Thoms KM, Krueger U, et al. Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma: a case-control study. Carcinogenesis 2005; 26(6):1085–90. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation &list_uids=15731165.Google Scholar
  55. 55.
    Han J, Colditz GA, Samson LD, Hunter DJ. Polymorphisms in DNA double-strand break repair genes and skin cancer risk. Cancer Res 2004; 64(9):3009–13. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation &list_uids=15126335.Google Scholar
  56. 56.
    Hutchinson PE, Osborne JE, Lear JT, Smith AG, Bowers PW, Morris PN, et al. Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin Cancer Res 2000; 6(2):498–504. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10690530.Google Scholar
  57. 57.
    Li C, Larson D, Zhang Z, Liu Z, Strom SS, Gershenwald JE, et al. Polymorphisms of the FAS and FAS ligand genes associated with risk of cutaneous malignant melanoma. Pharmacogenet Genomics 2006; 16(4):253–63. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16538172.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nadem Soufir
    • 1
  • Bernard Grandchamp
    • 2
  • Nicole Basset-Seguin
    • 3
  1. 1.Department of DermatologyLaboratoire de Biochimie Hormonale et Génétique, IFR02, Hopital Bichat-Claude BernardParisFrance
  2. 2.Department de Biochemie Hormonale et Génétique, Hôpital BichatParisFrance
  3. 3.Department of DermatologyHôpital,Saint-Louis, Policlinique de dermatologieParisFrance

Personalised recommendations