Advertisement

Oncogenic Viruses

  • Herbert Pfister
Part of the Cancer Treatment and Research book series (CTAR, volume 146)

Tissue homeostasis in the mature organism results from the net effects of cell proliferation and programmed cell death (apoptosis) and is guaranteed by highly complex extracellular and intracellular control of cell cycle and apoptosis. It is a hallmark of malignant cells to grow in the absence of appropriate extracellular signals such as growth factors or cytokines, which are either not sensed or not required as a consequence of disturbed intracellular control.

Keywords

Oncogenic Virus Viral Oncoproteins IARC Monograph Field Virology Transporter Associate With Antigen Presentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993; 62:453–81.PubMedGoogle Scholar
  2. 2.
    Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995; 80:199–211.PubMedCrossRefGoogle Scholar
  3. 3.
    Hunter T. Oncoprotein networks. Cell 1997; 88:333–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Nurse P, Masui Y, Hartwell L. Understanding the cell cycle. Nat Med 1998; 4:1103–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10:1054–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Ewen ME. The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev 1994; 13:45–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116:205–19.PubMedCrossRefGoogle Scholar
  8. 8.
    White E. Life, death, and the pursuit of apoptosis. Genes Dev 1996; 10:1–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85:817–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Zur Hausen H. Infections causing human cancer. Weinheim: Wiley-VCH Verlag, 2006.CrossRefGoogle Scholar
  11. 11.
    Campo MS, Moar MH, Sartirana ML, et al. The presence of bovine papillomavirus type 4 DNA is not required for the progression to, or the maintenance of, the malignant state in cancers of the alimentary canal in cattle. EMBO J 1985; 4:1819–25.PubMedGoogle Scholar
  12. 12.
    Campo MS, O’Neil BW, Barron RJ, et al. Experimental reproduction of the papilloma-carcinoma complex of the alimentary canal in cattle. Carcinogenesis 1994; 15:1597–601.PubMedCrossRefGoogle Scholar
  13. 13.
    IARC. Hepatitis virus. In: IARC (ed) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 1994.Google Scholar
  14. 14.
    IARC. Epstein–Barr virus. In: IARC (ed) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 1997:47–373.Google Scholar
  15. 15.
    IARC. Human papillomaviruses. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 2007:90.Google Scholar
  16. 16.
    IARC. Kaposi’s sarcoma herpesvirus/human herpesvirus 8. In: IARC (ed) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC, 1997:375–492.Google Scholar
  17. 17.
    Tyler K, Nathanson N. Pathogenesis of viral infections. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins, 2001:199–243.Google Scholar
  18. 18.
    Kieff E, Rickinson A. Epstein–Barr virus and its replication. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2511–73.Google Scholar
  19. 19.
    Moore P, Chang Y. Kaposi’s sarcoma-associated herpesvirus. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2803–33.Google Scholar
  20. 20.
    Major M, Rehermann B, Feinstone S. Hepatitis C viruses. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:1127–61.SGoogle Scholar
  21. 21.
    Ganem D, Schneider R. Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2923–69.Google Scholar
  22. 22.
    Howley P, Lowy D. Papillomaviruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:2197–229.Google Scholar
  23. 23.
    Nevins J. Cell transformation by viruses. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001:245–83.Google Scholar
  24. 24.
    Hoover RN. Lymphoma risks in populations with altered immunity: a search for mechanism. Cancer Res 1992; 52:5477s–8s.PubMedGoogle Scholar
  25. 25.
    Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer 2004; 4:757–68.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuppers DA, Lan K, Knight JS, et al. Regulation of matrix metalloproteinase 9 expression by Epstein–Barr virus nuclear antigen 3C and the suppressor of metastasis Nm23-H1. J Virol 2005; 79:9714–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Szekely L, Selivanova G, Magnusson KP, et al. EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 1993; 90:5455–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Humme S, Reisbach G, Feederle R, et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA 2003; 100:10989–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Kennedy G, Komano J, Sugden B. Epstein–Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A 2003; 100:14269–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Murakami M, Lan K, Subramanian C, et al. Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 2005; 79:1559–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Nanbo A, Inoue K, Adachi-Takasawa K, et al. Epstein–Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J 2002; 21:954–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Nanbo A, Yoshiyama H, Takada K. Epstein–Barr virus-encoded poly(A)– RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol 2005; 79:12280–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Pfeffer S, Zavolan M, Grasser FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304:734–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Steenbergen RD, de Wilde J, Wilting SM, et al. HPV-mediated transformation of the anogenital tract. J Clin Virol 2005; 32(Suppl 1):S25–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Smola-Hess S, Pfister H. Interaction of papillomaviral oncoproteins with cellular factors. In: Holzenburg A, Bogner E (eds) Structure–Function Relationships of Human Pathogenic Viruses. New York: Kluwer, 2002:431–61.CrossRefGoogle Scholar
  36. 36.
    Garner-Hamrick PA, Fostel JM, Chien WM, et al. Global effects of human papillomavirus type 18 E6/E7 in an organotypic keratinocyte culture system. J Virol 2004; 78:9041–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258:424–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68:362–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol 1999; 80(pt 6):1513–7.PubMedGoogle Scholar
  40. 40.
    Duensing S, Münger K. Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog Cell Cycle Res 2003; 5:383–91.PubMedGoogle Scholar
  41. 41.
    Schmitt A, Harry JB, Rapp B, et al. Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol 1994; 68:7051–9.PubMedGoogle Scholar
  42. 42.
    Caldeira S, Zehbe I, Accardi R, et al. The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 2003; 77:2195–206.PubMedCrossRefGoogle Scholar
  43. 43.
    Akgül B, Ghali L, Davies D, et al. HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Exp Dermatol 2007:16:590–599.PubMedCrossRefGoogle Scholar
  44. 44.
    Smola-Hess S, Pahne J, Mauch C, et al. Expression of membrane type 1 matrix metalloproteinase in papillomavirus-positive cells: role of the human papillomavirus (HPV) 16 and HPV8 E7 gene products. J Gen Virol 2005; 86:1291–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Steger G, Pfister H. In vitro expressed HPV 8 E6 protein does not bind p53. Arch Virol 1992; 125:355–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Kiyono T, Hiraiwa A, Fujita M, et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 1997; 94:11612–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Iftner T, Bierfelder S, Csapo Z, et al. Involvement of human papillomavirus type 8 genes E6 and E7 in transformation and replication. J Virol 1988; 62:3655–61.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Herbert Pfister
    • 1
  1. 1.Institute of VirologyUniversity Hospital Cologne50935 CologneGermany

Personalised recommendations