Skip to main content

Heme Degradation:

Mechanistic and Physiological Implications

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Heme oxidation catalyzed by heme oxygenase has evolved to carry out a number of important and diverse physiological processes including iron reutilization and cellular signaling in mammals, synthesis of light-harvesting pigments in cyanobacteria, light perception in plants, and the acquisition of iron in bacterial pathogens. In mammals the evolution of biliverdin IXα reductase in the conversion of biliverdin IXα to bilirubin IXα provides an important link between heme metabolism and antioxidant protection. The following review will address heme degradation in the context of the physiological and mechanistic aspects of heme oxidation and biliverdin reduction in animals and bacteria, and the possible clinical ramifications of modulation of heme oxygenase and biliverdin reductase activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu Y, Ortiz de Montellano PR. Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1. J Biol Chem 2000; 275(8):5297–5307.

    Article  PubMed  CAS  Google Scholar 

  2. Yoshida T, Noguchi M, Kikuchi G. Oxygenated form of heme. Heme oxygenase complex and requirement for second electron to initiate heme degradation from the oxygenated complex. J Biol Chem 1980; 255(10):4418–4420.

    PubMed  CAS  Google Scholar 

  3. Noguchi M, Yoshida T, Kikuchi G. Purification and properties of biliverdin reductases from pig spleen and rat liver. J Biochem (Tokyo) 1979; 86(4):833–848.

    CAS  Google Scholar 

  4. Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 1969; 244(23):6388–6394.

    PubMed  CAS  Google Scholar 

  5. Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 1986; 261(1):411–419.

    PubMed  CAS  Google Scholar 

  6. McCoubrey WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 1997; 247(2):725–732.

    Article  PubMed  CAS  Google Scholar 

  7. Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 1997; 94(20): 10919–10924.

    Article  PubMed  CAS  Google Scholar 

  8. Maines MD. Heme Oxygenase: Clinical Applications and Functions. Boca Raton: CRC Press, 1992.

    Google Scholar 

  9. Stocker R, Yamamoto Y, McDonagh AF et al. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235(4792): 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  10. Baranano DE, Rao M, Ferris CD et al. Biliverdin reductase: A major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002; 99(25):16093–16098.

    Article  PubMed  CAS  Google Scholar 

  11. Willis D, Moore AR, Willoughby DA. Heme oxygenase isoform expression in cellular and antibody-mediated models of acute inflammation in the rat. J Pathol 2000; 190(5):627–634.

    Article  PubMed  CAS  Google Scholar 

  12. Verma A, Hirsch DJ, Glatt CE et al. Carbon monoxide: A putative neural messenger [see comments] [published erratum appears in Science 1994 Jan 7;263 (5143):15]. Science 1993; 259(5093):381–384.

    Article  PubMed  CAS  Google Scholar 

  13. Otterbein LE, Bach FH, Alam J et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000; 6(4):422–428.

    Article  PubMed  CAS  Google Scholar 

  14. Bhoo SH, Davis SJ, Walker J et al. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 2001; 414(6865):776–779.

    Article  PubMed  CAS  Google Scholar 

  15. Wandersman C, Stojiljkovic I. Bacterial heme sources: The role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 2000; 3(2):215–220.

    Article  PubMed  CAS  Google Scholar 

  16. Wilks A, Schmitt MP. Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 1998; 273(2):837–841.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu W, Wilks A, Stojiljkovic I. Degradation of heme in gram-negative bacteria: The product of the hemO gene of neisseriae is a heme oxygenase. J Bacteriol 2000; 182(23):6783–6790.

    Article  PubMed  CAS  Google Scholar 

  18. Ratliff M, Zhu W, Deshmukh R et al. Homologues of neisserial heme oxygenase in gram-negative bacteria: Degradation of heme by the product of the pigA gene of pseudomonas aeruginosa. J Bacteriol 2001; 183(21):6394–6403.

    Article  PubMed  CAS  Google Scholar 

  19. Schuller DJ, Wilks A, Ortiz de Montellano PR et al. Crystal structure of human heme oxygenase-1. Nat Struct Biol 1999; 6(9):860–867.

    Article  PubMed  CAS  Google Scholar 

  20. Sugishima M, Omata Y, Kakuta Y et al. Crystal structure of rat heme oxygenase-1 in complex with heme. FEBS Lett 2000; 471(1):61–66.

    Article  PubMed  CAS  Google Scholar 

  21. Schuller DJ, Zhu W, Stojiljkovic I et al. Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1. Biochemistry 2001; 40(38):11552–11558.

    Article  PubMed  CAS  Google Scholar 

  22. Liu Y et al. Replacement of the distal glycine 139 transforms human heme oxygenase-1 into a peroxidase. J Biol Chem 2000; 275(44):34501–34507.

    Article  PubMed  CAS  Google Scholar 

  23. Lightning LK et al. Disruption of an active site hydrogen bond converts human heme oxygenase-1 into a peroxidase. J Biol Chem 2000; 276(14): 10612–10619.

    Article  PubMed  Google Scholar 

  24. Lad L et al. Crystal structures of the ferric, ferrous, and ferrous-No forms of the Asp140Ala mutant of human heme oxygenase-1: Catalytic implications. J Mol Biol 2003; 330(3):527–538.

    Article  PubMed  CAS  Google Scholar 

  25. Friedman J et al. Crystal structures of the NO-and CO-bound heme oxygenase from neisseriae meningitidis: Implications for O2 activation. J Biol Chem 2003; 278(36):34654–34659.

    Article  PubMed  CAS  Google Scholar 

  26. Caignan GA et al. Oxidation of heme to beta-and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. J Am Chem Soc 2002; 124(50):14879–14892.

    Article  PubMed  CAS  Google Scholar 

  27. Migita CT et al. The oxygen and carbon monoxide reactions of heme oxygenase. J Biol Chem 1998; 273(2):945–949.

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi S et al. Oxygen-bound heme-heme oxygenase complex: Evidence for a highly bent structure of the coordinated oxygen. J Am Chem Soc 1995; 117:6002–6006.

    Article  CAS  Google Scholar 

  29. Wilks A, Ortiz de Montellano PR. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J Biol Chem 1993; 268(30):22357–22362.

    PubMed  CAS  Google Scholar 

  30. Wilks A, Torpey J, Ortiz de Montellano PR. Heme oxygenase (HO-1). Evidence for electrophilic oxygen addition to the porphyrin ring in the formation of alpha-meso-hydroxyheme. J Biol Chem 1994; 269(47):29553–29556.

    PubMed  CAS  Google Scholar 

  31. Davydov RM et al. Hydroperoxy-heme oxygenase generated by cryoreduction catalyzes teh frmation of a-mesohydroxyheme as detected by EPR and ENDOR. J Am Chem Soc 1999; 121:10656–10657.

    Article  CAS  Google Scholar 

  32. Rivera M et al. Models of the low-spin iron (III) hydroperoxide intermediate of heme oxygenase: Magnetic resonance evidence for thermodynamic stabilization of the d(xy) electronic state at ambient temperatures. J Am Chem Soc 2002; 124(21):6077–6089.

    Article  PubMed  CAS  Google Scholar 

  33. Caignan GA et al. The hydroxide complex of Pseudomonas aeruginosa heme oxygenase as a model of the low-spin iron (III) hydroperoxide intermediate in heme catabolism: 13C NMR spectroscopic studies suggest the active participation of the heme in macrocycle hydroxylation. J Am Chem Soc 2003; 125(39):11842–11852.

    Article  PubMed  CAS  Google Scholar 

  34. Liu Y et al. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents. J Biol Chem 1997; 272(11):6909–6917.

    Article  PubMed  CAS  Google Scholar 

  35. Matera KM et al. Oxygen and one reducing equivalent are both required for the conversion of alpha-hydroxyhemin to verdoheme in heme oxygenase. J Biol Chem 1996; 271(12):6618–6624.

    Article  PubMed  CAS  Google Scholar 

  36. Docherty JC et al. Mechanism of action of heme oxygenase. A study of heme degradation to bile pigment by 18O labeling. J Biol Chem 1984; 259(21):13066–13069.

    PubMed  CAS  Google Scholar 

  37. Ortiz de Montellano PR, Wilks A. Heme oxygenase structure and mechanism. Adv Inorg Chem 2000; 51:359–402.

    Article  Google Scholar 

  38. Kikuchi A et al. Crystal structure of rat biliverdin reductase. Nat Struct Biol 2001; 8(3):221–225.

    Article  PubMed  CAS  Google Scholar 

  39. Whitby FG et al. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex. J Mol Biol 2002; 319(5):1199–1210.

    Article  PubMed  CAS  Google Scholar 

  40. Wang J, Ortiz De Montellano PR. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J Biol Chem 2003.

    Google Scholar 

  41. Yamaguchi T, Nakajima H. Changes in the composition of bilirubin-IX isomers during human prenatal development. Eur J Biochem 1995; 233(2):467–472.

    Article  PubMed  CAS  Google Scholar 

  42. Yamaguchi T, Komoda Y, Nakajima H. Biliverdin-IX alpha reductase and biliverdin-IX beta reductase from human liver. Purification and characterization. J Biol Chem 1994; 269(39):24343–24348.

    PubMed  CAS  Google Scholar 

  43. Shalloe F et al. Evidence that biliverdin-IX beta reductase and flavin reductase are identical. Biochem J 1996; 316(Pt 2):385–387.

    PubMed  CAS  Google Scholar 

  44. Pereira PJ et al. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Nat Struct Biol 2001; 8(3):215–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Wilks .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wilks, A. (2009). Heme Degradation:. In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_6

Download citation

Publish with us

Policies and ethics