Advertisement

Tetrapyrroles pp 101-115 | Cite as

Heme Degradation:

Mechanistic and Physiological Implications
  • Angela Wilks
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Heme oxidation catalyzed by heme oxygenase has evolved to carry out a number of important and diverse physiological processes including iron reutilization and cellular signaling in mammals, synthesis of light-harvesting pigments in cyanobacteria, light perception in plants, and the acquisition of iron in bacterial pathogens. In mammals the evolution of biliverdin IXα reductase in the conversion of biliverdin IXα to bilirubin IXα provides an important link between heme metabolism and antioxidant protection. The following review will address heme degradation in the context of the physiological and mechanistic aspects of heme oxidation and biliverdin reduction in animals and bacteria, and the possible clinical ramifications of modulation of heme oxygenase and biliverdin reductase activity.

Keywords

Cytochrome P450 Reductase Heme Degradation Flavin Reductase Heme Metabolism Biliverdin Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu Y, Ortiz de Montellano PR. Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1. J Biol Chem 2000; 275(8):5297–5307.CrossRefPubMedGoogle Scholar
  2. 2.
    Yoshida T, Noguchi M, Kikuchi G. Oxygenated form of heme. Heme oxygenase complex and requirement for second electron to initiate heme degradation from the oxygenated complex. J Biol Chem 1980; 255(10):4418–4420.PubMedGoogle Scholar
  3. 3.
    Noguchi M, Yoshida T, Kikuchi G. Purification and properties of biliverdin reductases from pig spleen and rat liver. J Biochem (Tokyo) 1979; 86(4):833–848.Google Scholar
  4. 4.
    Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 1969; 244(23):6388–6394.PubMedGoogle Scholar
  5. 5.
    Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 1986; 261(1):411–419.PubMedGoogle Scholar
  6. 6.
    McCoubrey WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 1997; 247(2):725–732.CrossRefPubMedGoogle Scholar
  7. 7.
    Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 1997; 94(20): 10919–10924.CrossRefPubMedGoogle Scholar
  8. 8.
    Maines MD. Heme Oxygenase: Clinical Applications and Functions. Boca Raton: CRC Press, 1992.Google Scholar
  9. 9.
    Stocker R, Yamamoto Y, McDonagh AF et al. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235(4792): 1043–1046.CrossRefPubMedGoogle Scholar
  10. 10.
    Baranano DE, Rao M, Ferris CD et al. Biliverdin reductase: A major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002; 99(25):16093–16098.CrossRefPubMedGoogle Scholar
  11. 11.
    Willis D, Moore AR, Willoughby DA. Heme oxygenase isoform expression in cellular and antibody-mediated models of acute inflammation in the rat. J Pathol 2000; 190(5):627–634.CrossRefPubMedGoogle Scholar
  12. 12.
    Verma A, Hirsch DJ, Glatt CE et al. Carbon monoxide: A putative neural messenger [see comments] [published erratum appears in Science 1994 Jan 7;263 (5143):15]. Science 1993; 259(5093):381–384.CrossRefPubMedGoogle Scholar
  13. 13.
    Otterbein LE, Bach FH, Alam J et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000; 6(4):422–428.CrossRefPubMedGoogle Scholar
  14. 14.
    Bhoo SH, Davis SJ, Walker J et al. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 2001; 414(6865):776–779.CrossRefPubMedGoogle Scholar
  15. 15.
    Wandersman C, Stojiljkovic I. Bacterial heme sources: The role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 2000; 3(2):215–220.CrossRefPubMedGoogle Scholar
  16. 16.
    Wilks A, Schmitt MP. Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 1998; 273(2):837–841.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu W, Wilks A, Stojiljkovic I. Degradation of heme in gram-negative bacteria: The product of the hemO gene of neisseriae is a heme oxygenase. J Bacteriol 2000; 182(23):6783–6790.CrossRefPubMedGoogle Scholar
  18. 18.
    Ratliff M, Zhu W, Deshmukh R et al. Homologues of neisserial heme oxygenase in gram-negative bacteria: Degradation of heme by the product of the pigA gene of pseudomonas aeruginosa. J Bacteriol 2001; 183(21):6394–6403.CrossRefPubMedGoogle Scholar
  19. 19.
    Schuller DJ, Wilks A, Ortiz de Montellano PR et al. Crystal structure of human heme oxygenase-1. Nat Struct Biol 1999; 6(9):860–867.CrossRefPubMedGoogle Scholar
  20. 20.
    Sugishima M, Omata Y, Kakuta Y et al. Crystal structure of rat heme oxygenase-1 in complex with heme. FEBS Lett 2000; 471(1):61–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Schuller DJ, Zhu W, Stojiljkovic I et al. Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1. Biochemistry 2001; 40(38):11552–11558.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Y et al. Replacement of the distal glycine 139 transforms human heme oxygenase-1 into a peroxidase. J Biol Chem 2000; 275(44):34501–34507.CrossRefPubMedGoogle Scholar
  23. 23.
    Lightning LK et al. Disruption of an active site hydrogen bond converts human heme oxygenase-1 into a peroxidase. J Biol Chem 2000; 276(14): 10612–10619.CrossRefPubMedGoogle Scholar
  24. 24.
    Lad L et al. Crystal structures of the ferric, ferrous, and ferrous-No forms of the Asp140Ala mutant of human heme oxygenase-1: Catalytic implications. J Mol Biol 2003; 330(3):527–538.CrossRefPubMedGoogle Scholar
  25. 25.
    Friedman J et al. Crystal structures of the NO-and CO-bound heme oxygenase from neisseriae meningitidis: Implications for O2 activation. J Biol Chem 2003; 278(36):34654–34659.CrossRefPubMedGoogle Scholar
  26. 26.
    Caignan GA et al. Oxidation of heme to beta-and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. J Am Chem Soc 2002; 124(50):14879–14892.CrossRefPubMedGoogle Scholar
  27. 27.
    Migita CT et al. The oxygen and carbon monoxide reactions of heme oxygenase. J Biol Chem 1998; 273(2):945–949.CrossRefPubMedGoogle Scholar
  28. 28.
    Takahashi S et al. Oxygen-bound heme-heme oxygenase complex: Evidence for a highly bent structure of the coordinated oxygen. J Am Chem Soc 1995; 117:6002–6006.CrossRefGoogle Scholar
  29. 29.
    Wilks A, Ortiz de Montellano PR. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J Biol Chem 1993; 268(30):22357–22362.PubMedGoogle Scholar
  30. 30.
    Wilks A, Torpey J, Ortiz de Montellano PR. Heme oxygenase (HO-1). Evidence for electrophilic oxygen addition to the porphyrin ring in the formation of alpha-meso-hydroxyheme. J Biol Chem 1994; 269(47):29553–29556.PubMedGoogle Scholar
  31. 31.
    Davydov RM et al. Hydroperoxy-heme oxygenase generated by cryoreduction catalyzes teh frmation of a-mesohydroxyheme as detected by EPR and ENDOR. J Am Chem Soc 1999; 121:10656–10657.CrossRefGoogle Scholar
  32. 32.
    Rivera M et al. Models of the low-spin iron (III) hydroperoxide intermediate of heme oxygenase: Magnetic resonance evidence for thermodynamic stabilization of the d(xy) electronic state at ambient temperatures. J Am Chem Soc 2002; 124(21):6077–6089.CrossRefPubMedGoogle Scholar
  33. 33.
    Caignan GA et al. The hydroxide complex of Pseudomonas aeruginosa heme oxygenase as a model of the low-spin iron (III) hydroperoxide intermediate in heme catabolism: 13C NMR spectroscopic studies suggest the active participation of the heme in macrocycle hydroxylation. J Am Chem Soc 2003; 125(39):11842–11852.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu Y et al. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents. J Biol Chem 1997; 272(11):6909–6917.CrossRefPubMedGoogle Scholar
  35. 35.
    Matera KM et al. Oxygen and one reducing equivalent are both required for the conversion of alpha-hydroxyhemin to verdoheme in heme oxygenase. J Biol Chem 1996; 271(12):6618–6624.CrossRefPubMedGoogle Scholar
  36. 36.
    Docherty JC et al. Mechanism of action of heme oxygenase. A study of heme degradation to bile pigment by 18O labeling. J Biol Chem 1984; 259(21):13066–13069.PubMedGoogle Scholar
  37. 37.
    Ortiz de Montellano PR, Wilks A. Heme oxygenase structure and mechanism. Adv Inorg Chem 2000; 51:359–402.CrossRefGoogle Scholar
  38. 38.
    Kikuchi A et al. Crystal structure of rat biliverdin reductase. Nat Struct Biol 2001; 8(3):221–225.CrossRefPubMedGoogle Scholar
  39. 39.
    Whitby FG et al. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex. J Mol Biol 2002; 319(5):1199–1210.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang J, Ortiz De Montellano PR. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J Biol Chem 2003.Google Scholar
  41. 41.
    Yamaguchi T, Nakajima H. Changes in the composition of bilirubin-IX isomers during human prenatal development. Eur J Biochem 1995; 233(2):467–472.CrossRefPubMedGoogle Scholar
  42. 42.
    Yamaguchi T, Komoda Y, Nakajima H. Biliverdin-IX alpha reductase and biliverdin-IX beta reductase from human liver. Purification and characterization. J Biol Chem 1994; 269(39):24343–24348.PubMedGoogle Scholar
  43. 43.
    Shalloe F et al. Evidence that biliverdin-IX beta reductase and flavin reductase are identical. Biochem J 1996; 316(Pt 2):385–387.PubMedGoogle Scholar
  44. 44.
    Pereira PJ et al. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Nat Struct Biol 2001; 8(3):215–220.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreUSA

Personalised recommendations