5-Aminolaevulinic Acid Dehydratase, Porphobilinogen Deaminase and Uroporphyrinogen III Synthase

  • Heidi L. Schubert
  • Peter T. Erskine
  • Jonathan B. Cooper
Part of the Molecular Biology Intelligence Unit book series (MBIU)


The three enzymes 5-aminolaevulinic acid dehydratase (ALAD, E.C.; some times referred to as porphobilinogen synthase), porphobilinogen deaminase (EC; also known as hydroxymethylbilane synthase) and uroporphyrinogen III synthase (U3S; E.C. together convert 5-aminolaevulinic acid (ALA) into uroporphyrinogen III, from which all tetrapyrroles are synthesized. The X-ray structures of several ALADs have been determined showing that the enzyme forms a large homo-octameric structure with all eight active sites on the outer surface. Each subunit adopts the TIM barrel fold with an N-terminal arm which forms extensive inter-subunit interactions. The active site of each subunit is located in a pronounced cavity formed by loops at the C-terminal ends of the strands forming the TIM barrel. Current proposals for the catalytic mechanism involve the binding of both substrate moieties by formation of Schiff bases with two invariant active site lysine residues. Structural studies of porphobilinogen deaminase have shown that the enzyme has three domains, two of which show a strong structural resemblance to a number of periplasmic binding proteins. The reaction catalysed by uroporphyrinogen III synthase involves cyclization and ring inversion, predicted to proceed through a spirocyclic intermediate. X-ray structures of the enzyme from humans and a thermophilic bacterium have enabled models of the catalytic process to be proposed.


Schiff Base Acute Intermittent Porphyria Porphobilinogen Deaminase Congenital Erythropoietic Porphyria Linear Tetrapyrrole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jordan PM. Biosynthesis of tetrapyrroles. New Comprehensive Biochemistry 1991; 19:1–65.CrossRefGoogle Scholar
  2. 2.
    Jordan PM. Highlights in haem biosynthesis. Curr Opin Struc Biol 1994; 4:902–911.CrossRefGoogle Scholar
  3. 3.
    Warren MJ, Scott AI. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. TIBS 1990; 15:486–491.PubMedGoogle Scholar
  4. 4.
    Jaffe EK. Porphobilinogen synthase, the first source of heme’s asymmetry. J Bioenerg Biomemb 1995; 27:169–179.CrossRefGoogle Scholar
  5. 5.
    Jaffe EK. The porphobilinogen synthase family of metalloenzymes. Acta Crystallogr 2000; D56:115–128.Google Scholar
  6. 6.
    Jordan PM, Gibbs PNB. Mechanism of action of 5-aminolevulinate dehydratase from human erythrocytes. Biochem J 1985; 227:1015–1020.PubMedGoogle Scholar
  7. 7.
    Gibson K, Neuberger A, Scott JJ. The purification and properties of δ-aminolevulinic acid dehydratase. Biochem J 1955; 61:618–629.PubMedGoogle Scholar
  8. 8.
    Anderson PM, Desnick RJ. δ-Aminolevulinate dehydrase from human erythrocytes. J Biol Chem 1979; 254:6924–6930.PubMedGoogle Scholar
  9. 9.
    Spencer P, Jordan PM. Purification and characterisation of 5-aminolevulinic acid dehydratase from E. coli and a study of reactive thiols at the metal-binding domain. Biochem J 1993; 290:279–287.PubMedGoogle Scholar
  10. 10.
    Schneider HAW, Liedgens W. An evolutionary tree based on monoclonal antibody recognized surface-features of a plastid enzyme (5-aminolevulinate dehydratase). Z Naturforsch 1981; 36c:44–50.Google Scholar
  11. 11.
    Liedgens W, Lutz C, Schneider HAW. Molecular-properties of 5-aminolevulinic acid dehydratase from Spinacia-oleracea. Eur J Biochem 1983; 135:75–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Doss M, Von-Tieperman R, Schneider J et al. New types of hepatic porphyria with porphobilinogen synthase defect and intermittent acute clinical manifestation. Klin Wochenschr 1979; 57:1123–1127.PubMedCrossRefGoogle Scholar
  13. 13.
    Brennan MJW, Cantrill RC. δ-Aminolevulinic acid is a potent agonist for GABA autoreceptors. Nature (Lond) 1979; 280:514–515.CrossRefGoogle Scholar
  14. 14.
    Mitchell G, Larochelle J, Lambert M et al. Neurological crises in hereditary tyrosinemia. New England J Med 1990; 322:432–437.Google Scholar
  15. 15.
    Lindstedt S, Holme E, Lock EA et al. Treatment of hereditary tyrosinemia type-I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 1992; 340:813–817.PubMedCrossRefGoogle Scholar
  16. 16.
    Lindblad B, Lindstedt S, Steen G. On the enzymic defects in hereditary tyrosinaemia. Proc Natl Acad Sci USA 1977; 74:4641–4645.PubMedCrossRefGoogle Scholar
  17. 17.
    Senior N, Thomas PG, Cooper JB et al. Comparative studies of the 5-aminolevulinic acid dehydratase from P. sativum, E. coli and S. cerevisiae. Biochem J 1996; 320:401–412.PubMedGoogle Scholar
  18. 18.
    Mauzerall D, Granick S. The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 1956; 219:435–446.PubMedGoogle Scholar
  19. 19.
    Wu W, Shemin D, Richards KE et al. The quaternary structure of δ-aminolevulinic acid dehydratase from bovine liver. Proc Natl Acad Sci USA 1974; 71:1767–1770.PubMedCrossRefGoogle Scholar
  20. 20.
    Pilz I, Schwarz E, Vuga M et al. Small angle X-ray scattering study of bovine porphobilinogen synthase. Biol Chem Hoppe-Seyler 1988; 369:1099–1103.PubMedGoogle Scholar
  21. 21.
    Erskine PT, Senior N, Awan S et al. X-ray structure of 5-aminolevulinate dehydratase, a hybrid aldolase. Nat Struct Biol 1997; 4:1025–1031.PubMedCrossRefGoogle Scholar
  22. 22.
    Gibbs PNB, Jordan PM. Identification of a lysine at the active site of human 5-aminolevulinate dehydratase. Biochem J 1986; 236:447–451.PubMedGoogle Scholar
  23. 23.
    Boese QF, Spano AJ, Li J et al. 5-Aminolevulinic acid dehydratase in pea. Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem 1991; 266:17060–17066.PubMedGoogle Scholar
  24. 24.
    Dent A, Beyersmann D, Block C et al. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended X-ray absorption fine structure. Biochemistry 1990; 29:7822–7828.PubMedCrossRefGoogle Scholar
  25. 25.
    Mitchell LW, Jaffe EK. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys 1993; 300:169–177.PubMedCrossRefGoogle Scholar
  26. 26.
    Erskine PT, Norton E, Cooper JB et al. The X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 Å resolution. Biochemistry 1999; 38:4266–4276.PubMedCrossRefGoogle Scholar
  27. 27.
    Frankenberg N, Erskine PT, Cooper JB et al. High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase. J Molec Biol 1999; 289:591–602.PubMedCrossRefGoogle Scholar
  28. 28.
    Bollivar DW, Clauson C, Lighthall R et al. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal independent hexamer. BMC Biochem 2004; 5:17.PubMedCrossRefGoogle Scholar
  29. 29.
    Breinig S, Kervinen J, Stith L et al. Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Nat Struct Biol 2003; 10:757–763.PubMedCrossRefGoogle Scholar
  30. 30.
    Branden C, Tooze J. Introduction to Protein Structure. New York: Garland, 1991.Google Scholar
  31. 31.
    Frankenberg N, Jahn D, Jaffe EK. Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions. Biochemistry 1999; 38:13976–13982.PubMedCrossRefGoogle Scholar
  32. 32.
    Coates L, Beaven G, Erskine PT et al. The X-ray structure of the plant like 5-aminolaevulinic acid dehydratase from Chlorobium vibrioforme complexed with the inhibitor laevulinic acid at 2.6 Ångstrom resolution. J Molec Biol 2004; 342:563–570.PubMedCrossRefGoogle Scholar
  33. 33.
    Erskine PT, Newbold R, Brindley AA et al. The X-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with substrate and three inhibitors. J Molec Biol 2001; 312:133–141.PubMedCrossRefGoogle Scholar
  34. 34.
    Jarret C, Stauffer F, Henz ME et al. Inhibition of Escherichia coli porphobilinogen synthase using analogs of postulated intermediates. Chem Biol 2000; 7:185–196.PubMedCrossRefGoogle Scholar
  35. 35.
    Neier R. A novel synthesis of porphobilinogen: Synthetic and biosynthetic studies. J Heterocydic Chem 2000; 37:487–508.CrossRefGoogle Scholar
  36. 36.
    Shoolingin-Jordan PM, Spencer P, Sarwar M et al. 5-Aminolaevulinic acid dehydratase: Metals, mutants and mechanism. Biochem Soc Trans 2002; 30:584–590.PubMedCrossRefGoogle Scholar
  37. 37.
    Stauffer F, Zizzari E, Engeloch-Jarret C et al. Inhibition studies of porphobilinogen synthase from Escherichia coli differentiating between the two recognition sites. Chem Bio Chem 2001; 2:343–354.PubMedGoogle Scholar
  38. 38.
    Neier R. Chemical synthesis of porphobilinogen and studies of its biosynthesis. Adv Nitrogen Heterocycles 1996; 2:35–146.Google Scholar
  39. 39.
    Erskine PT, Coates L, Newbold R et al. The X-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with two diacid inhibitors. FEBS Lett 2001; 503:196–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Kervinen J, Jaffe EK, Stauffer F et al. Mechanistic basis for suicide inactivation of porphobilinogen synthase by 4,7-dioxosebacic acid, an inhibitor that shows dramatic species selectivity. Biochemistry 2001; 40:8227–8236.PubMedCrossRefGoogle Scholar
  41. 41.
    Jaffe EK, Kervinen J, Martins J et al. Species-specific inhibition of porphobilinogen synthase by 4-oxosebacic acid. J Biol Chem 2002; 277:19792–19799.PubMedCrossRefGoogle Scholar
  42. 42.
    Frere F, Schubert WD, Stauffer F et al. Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism. J Molec Biol 2002; 320:237–247.PubMedCrossRefGoogle Scholar
  43. 43.
    Chaudhry AG, Jordan PM. Stereochemical studies on the formation of porphobilinogen. Biochem Soc Trans 1976; 4:760–761.PubMedGoogle Scholar
  44. 44.
    Erskine PT, Coates L, Butler D et al. X-ray structure of a putative reaction intermediate of 5-ALA-dehydratase. Biochem J 2003; 373:733–738.PubMedCrossRefGoogle Scholar
  45. 45.
    Thunell S, Holmberg L, Lundgren J. Aminolevulinate dehydratase porphyria in infancy a clinical and biochemical-study. J Clin Chem Clin Biochem 1987; 25:5–14.PubMedGoogle Scholar
  46. 46.
    Nordmann Y, Puy H. Human hereditary hepatic porphyrias. Clin Chim Acta 2002; 325:17–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Gross U, Hoffmann GF, Doss MO. Erythropoietic and hepatic porphyries. J Inherit Metab Dis 2000; 23:641–661.PubMedCrossRefGoogle Scholar
  48. 48.
    Thunell S. Porphyrins, porphyrin metabolism and porphyrias. Scand J Clin Lab Invest 2000; 60:509–540.PubMedCrossRefGoogle Scholar
  49. 49.
    Wetmur JG, Bishop DF, Cantelmo C et al. Human δ-aminolevulinate dehydratase— Nucleotide-sequence of a full-length cDNA clone. Proc Nad Acad Sci USA 1986; 83:7703–7707.CrossRefGoogle Scholar
  50. 50.
    Wetmur JG, Kaya AH, Plewinska M et al. Molecular characterization of the human δ-aminolevulinate dehydratase-2 (ALAD2) allele—Implications for molecular screening of individuals for genetic susceptibility to lead-poisoning. Am J Hum Genet 1991; 49:757–763.PubMedGoogle Scholar
  51. 51.
    Ishida N, Fujita H, Fukuda T et al. Cloning and expression of the defective genes from a patient with δ-aminolevulinate dehydratase porphyria. J Clin Invest 1992; 89:1431–1437.PubMedCrossRefGoogle Scholar
  52. 52.
    Plewinska M, Thunell S, Holmberg L et al. δ-Aminolevulinate dehydratase deficient porphyria— identification of the molecular lesions in a severely affected homozygote. Am J Hum Genet 1991; 49:167–174.PubMedGoogle Scholar
  53. 53.
    Akagi R, Yasui Y, Harper P et al. A novel mutation of δ-aminolaevulinate dehydratase in a healthy child with 12% erythrocyte enzyme activity. Brit J Haematol 1999; 106:931–937.CrossRefGoogle Scholar
  54. 54.
    Simons TJB. The affinity of human erythrocyte porphobilinogen synthase for Zn2+ and Pb2+. Eur J Biochem 1995; 234:178–183.PubMedCrossRefGoogle Scholar
  55. 55.
    Warren MJ, Cooper JB, Wood SP et al. Lead poisoning, haem synthesis and 5-aminolevulinic acid dehydratase. TIBS 1998; 23:217–221.PubMedGoogle Scholar
  56. 56.
    Erskine PT, Duke EMH, Tickle IJ et al. MAD analyses of yeast 5-aminolaevulinate dehydratase. Their use in structure determination and in defining the metal binding sites. Acta Crystallogr D 2000; D56:421–430.CrossRefGoogle Scholar
  57. 57.
    Jordan PM, Warren MJ. Evidence for a dipyrromethane cofactor at the catalytic site of Escherichia-coli porphobilinogen deaminase. FEBS Lett 1987; 225:87–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Awan SJ, Siligardi G, Shoolingin-Jordan PM et al. Reconstitution of the holoenzyme form of Escherichia coli porphobilinogen deaminase from apoenzyme with porphobilinogen and preuroporphyrinogen: A study using circular dichroism spectroscopy. Biochemistry 1997; 36:9273–9282.PubMedCrossRefGoogle Scholar
  59. 59.
    Louie GV, Brownlie PD, Lambert R et al. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature 1992; 359:33–39.PubMedCrossRefGoogle Scholar
  60. 60.
    Shoolingin-Jordan PM. Structure and mechanism of enzymes involved in the assembly of the tetrapyrrole macrocycle. Biochem Soc Trans 1998; 26(3):326–336.PubMedGoogle Scholar
  61. 61.
    Wang AL, Arredondo-Vega FX, Giampietro PF et al. Regional gene assignment of human porphobilinogen deaminase and esterase-A4 to chromosome 11q23–11qter. Proc Natl Acad Sci USA 1981; 78:5734–5738.PubMedCrossRefGoogle Scholar
  62. 62.
    Grandchamp B, Picat C, Mignotte V et al. Tissue-specific splicing mutation in acute intermittent porphyria. Proc Natl Acad Sci USA 1989; 86:661–664.PubMedCrossRefGoogle Scholar
  63. 63.
    Chretien S, Dubart A, Beaupain D et al. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci USA 1988; 85:6–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Raich N, Romeo PH, Dubart A et al. Molecular-cloning and complete primary sequence of human-erythrocyte porphobilinogen deaminase. Nucl Acid Res 1986; 14:5955–5968.CrossRefGoogle Scholar
  65. 65.
    Yoo HW, Warner CA, Chen CH et al. Hydroxymethylbilane synthase—Complete genomic sequence and amplifiable polymorphisms in the human gene. Genomics 1993; 15:21–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Deybach JC, Puy H. Porphobilinogen deaminase gene structure and molecular defects. J Bioenergetics and Biomembranes 1995; 27:197–205.CrossRefGoogle Scholar
  67. 67.
    Wood S, Lambert R, Jordan PM. Molecular basis of acute intermittent porphyria. Molec Med Today 1995; 1:232–239.CrossRefGoogle Scholar
  68. 68.
    Esnouf R. An extensively enhanced version of MolScript that includes greatly enhanced coloring capabilities. J Molec Graphics and Mod 1997; 15:132.CrossRefGoogle Scholar
  69. 69.
    Beale SI, Weinstein JD. Biosynthesis of heme and chlorophylls. New York: McGraw-Hill, 1990.Google Scholar
  70. 70.
    Battersby AR, Leeper FJ. Biosynthesis of the pigments of life: Mechanistic studies on the conversion of porphobilinogen to uroporphyrinogen III. Chem Rev 1990; 90(7): 1261–1274.CrossRefGoogle Scholar
  71. 71.
    Battersby AR, Fookes CJ, Matcham GW et al. Biosynthesis of the pigments of life: Formation of the macrocycle. Nature 1980; 285(5759):17–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Jordan PM. The biosynthesis of 5-aminolevulinic acid and its transformation into coproporphyrinogen in animals and bacteria. In: Dailey HA, ed. Biosynthesis of heme and chlorophylls. New York: McGraw-Hill, 1990:55–122.Google Scholar
  73. 73.
    Bogorad L. The enzymic synthesis of porphyrins from porphobilinogen. II. Uroporphyrin III. J Biol Chem 1957; 233(2):510–515.Google Scholar
  74. 74.
    Battersby A, Fookes C, McDonald E et al. Biosynthesis of type-III porphyrins: Proof of intact enzymatic conversion of the head-to-tail bilane into uro’gen III by intramolecular arrangement. J Chem Soc Chem Commun 1978; 185–186.Google Scholar
  75. 75.
    Jordan PM, Burton G, Nordlov H et al. Preuroporphyrinogen: A substrate for uroporphyrinogen III cosynthase. J Chem Soc Chem Comm 1979; 204–205.Google Scholar
  76. 76.
    Burton G, Fagerness PE, Hosozawa S et al. 13C N.M.R. Evidence for a new intermediate, preuroporphyrinogen, in the enzymatic transformation of prophobilinogen into uroporphyrins I and III. J Chem Soc Chem Comm 1979; 202–204.Google Scholar
  77. 77.
    Battersby AR, Fookes CJ, Gustafson-Potter KE et al. Proof by synthesis that unrearranged hydroxymethylbilane is the product from deaminase and the substrate for cosynthase in the biosynthesis of uro’gen III. J Chem Soc Chem Comm 1979; 1155–1158.Google Scholar
  78. 78.
    Mathewson J, Corwin A. Biosynthesis of pyrrolepigments: A mechanism for porphybilinogen polymerization. J Am Chem Soc 1961; 83:135–137.CrossRefGoogle Scholar
  79. 79.
    Desnick RJ, Bishop DF. Preface. Enzyme 1982; 28:91–92.PubMedGoogle Scholar
  80. 80.
    Leeper FJ. The evidence for a spirocyclic intermediate in the formation of uroporphyrinogen III by cosynthase. Ciba Found Symp 1994; 180:111–123.PubMedGoogle Scholar
  81. 81.
    Pichon C, Atshaves BP, Stolowich NJ et al. Evidence for an intermediate in the enzymatic formation of uroporphyrinogen III. Bioorg Med Chem 1994; 2(3): 153–168.PubMedCrossRefGoogle Scholar
  82. 82.
    Stark WM, Hart GJ, Battersby ARJ. Synthetic studies on the proposed spiro intermediate for biosynthesis of the natrual porphyrins: Inhibition of cosynthase. Chem Soc Chem Commun 1986; 465–467.Google Scholar
  83. 83.
    Battersby AR, McDonald E. Biosynthesis of porphyrins and corrins. Philos Trans R Soc Lond B Biol Sci 1976; 273(924):161–180.PubMedCrossRefGoogle Scholar
  84. 84.
    Battersby AR, Fookes CJ, Matcham GWJ et al. Biosynthesis of natural porphyrins: Studies with isomeric hydroxymethylbilanes on the specificity and action of cosynthase. Angew Chem Int Ed Engl 1981; 20:293–295.CrossRefGoogle Scholar
  85. 85.
    Stark WM, Baker MG, Raithby PR et al. The spiro intermediate proposed for biosynthesis of the natural porphyrins: Synthesis and properties of its macrocycle. J Chem Soc Chem Comm 1985; 1294.Google Scholar
  86. 86.
    Cassidy MA, Crockett N, Leeper FJ et al. Synthetic studies on the proposed spiro intermediate for biosynthesis of the natural porphyrins: The stereochemical probe. J Chem Soc Chem Commun 1991; 6:384–386.CrossRefGoogle Scholar
  87. 87.
    Jordan PM. Uroporphyrinogen III cosynthetase: A direct assay method. Enzyme 1982; 28(2–3):158–169.PubMedGoogle Scholar
  88. 88.
    Battersby AR, Fookes CJ, Pandey PS. Linear tetrapyrroleic intermediates for biosynthesis of the natural porphyrins. Experiments with modified substrates. Tetrahedron 1983; 39:1919–1926.CrossRefGoogle Scholar
  89. 89.
    Pichon C, Atshaves BP, Xue T et al. Studies on uro’gen III synthase with modified bilanes. Bioorg Med Chem 1994; 4(9):1105–1110.CrossRefGoogle Scholar
  90. 90.
    Falk JE, Benson A. Separation of uroporphyrin esters I and III by paper chromatography. Biochem J 1953; 55:101–104.PubMedGoogle Scholar
  91. 91.
    Nordlov H, Jordan PM, Burton G et al. Improved separation of uroporphyrin isomers by high-performance liquid chromatography. J Chromatog 1980; 190(1):221–225.CrossRefGoogle Scholar
  92. 92.
    Roessner CA, Ponnamperuma K, Scott AI. Mutagenesis identifies a conserved tyrosine residue important for the activity of uroporphyrinogen III synthase from Anacystis nidulans. FEBS Lett 2002; 525(1–3):25–28.PubMedCrossRefGoogle Scholar
  93. 93.
    Mathews MA, Schubert HL, Whitby FG et al. Crystal structure of human uroporphyrinogen III synthase. EMBO J 2001; 20(21):5832–5829.PubMedCrossRefGoogle Scholar
  94. 94.
    Mizohata E, Matsuura T, Sakai H et al. Crystal structure of uroporphyrinogen III synthase from thermus thermophilus Hb8 (PDB codes 1WCW and 1WD7) protein data bank.Google Scholar
  95. 95.
    Romeo G, Levin EY. Uroporphyrinogen 3 cosynthetase in human congenital erythropoietic porphyria. Proc Natl Acad Sci USA 1969; 63(3):856–863.PubMedCrossRefGoogle Scholar
  96. 96.
    Desnick RJ, Astrin KH. Congenital erythropoietic porphyria: Advances in pathogenesis and treatment. Br J Haematol 2002; 117(4):779–795.PubMedCrossRefGoogle Scholar
  97. 97.
    Bensighoum M, Larou M, Lemeur M et al. The disruption of mouse uroporphyrinogen III synthase (uros) gene is fully lethal. Transgenics 1998; 2:275–280.Google Scholar
  98. 98.
    Xu W, Astrin KH, Desnick RJ. Molecular basis of congenital erythropoietic porphyria: Mutations in the human uroporphyrinogen III synthase gene. Hum Mutat 1996; 7(3): 187–192.PubMedCrossRefGoogle Scholar
  99. 99.
    Tsai SF, Bishop DF, Desnick RJ. Human uroporphyrinogen III synthase: Molecular cloning, nucleotide sequence, and expression of a full-length cDNA. Proc Natl Acad Sci USA 1988; 85(19):7049–7053.PubMedCrossRefGoogle Scholar
  100. 100.
    Aizencang G, Solis C, Bishop DF et al. Human uroporphyrinogen-III synthase: Genomic organization, alternative promoters, and erythroid-specific expression. Genomics 2000; 70(2):223–231.PubMedCrossRefGoogle Scholar
  101. 101.
    Shady AA, Colby BR, Cunha LF et al. Congenital erythropoietic porphyria: Identification and expression of eight novel mutations in the uroporphyrinogen III synthase gene. Br J Haematol 2002; 117(4):980–987.PubMedCrossRefGoogle Scholar
  102. 102.
    Piomelli S, Poh-Fitzpatrick MB, Seaman C et al. Complete suppression of the symptoms of congenital erythropoietic porphyria by long-term treatment with high-level transfusions. N Engl J Med 1986; 314(16):1029–1031.PubMedCrossRefGoogle Scholar
  103. 103.
    Poh-Fitzpatrick MB, Piomelli S, Seaman C et al. Congenital erythropoietic porphyria: Complete suppresion of symptoms by long-term high-level transfusion with deferoxamine infusion iron rescue. In: Orfanos C, Stadler R, Gollnick H, eds. Dermatology in Five Continents. Berlin: Springer-Verlag, 1988:876–879.Google Scholar
  104. 104.
    Tezcan I, Xu W, Gurgey A et al. Congenital erythropoietic porphyria successfully treated by allogeneic bone marrow transplantation. Blood 1998; 92(11):4053–4058.PubMedGoogle Scholar
  105. 105.
    Mazurier F, Geronimi F, Lamrissi-Garcia I et al. Correction of deficient CD34+ cells from peripheral blood after mobilization in a patient with congenital erythropoietic porphyria. Mol Ther 2001; 3(3):411–417.PubMedCrossRefGoogle Scholar
  106. 106.
    Moreau-Gaudry F, Mazurier F, Bensidhoum M et al. Metabolic correction of congenital erythropoietic porphyria by retrovirus-mediated gene transfer into Epstein-Barr virus-transformed B-cell lines. Blood 1995; 85(6):1449–1453.PubMedGoogle Scholar
  107. 107.
    Xu W, Warner CA, Desnick RJ. Congenital erythropoietic porphyria: identification and expression of 10 mutations in the uroporphyrinogen III synthase gene. J Clin Invest 1995; 95:905–912.PubMedCrossRefGoogle Scholar
  108. 108.
    Shady AA, Colby BR, Cunha LF et al. Congenital erythropoietic poprphyria: identification and expession of eight novel mutations in the uroporphyrinogen III synthase gene. Brit J Haematol 2002; 117:980–987.CrossRefGoogle Scholar
  109. 109.
    Fontanellas A, Bensidhoum M, Enriquez de Salamanca R et al. A systematic analysis of the mutations of the uroporphyrinogen III synthase gene in congenital erythropoietic porphyria. Eur J Hum Genet 1996; 4:274–282.PubMedGoogle Scholar
  110. 110.
    Bensidhoum M, Larou M, Lemeur M et al. The disruption of mouse uroporphyrinogen III synthase (uros) gene is fully lethal. Transgenics 1998; 2:275–280.Google Scholar
  111. 111.
    Takamura N, Hombrados I, Tanigawa K et al. Novel point mutation in the uroporphyrinogen III synthase gene causes congenital erythropoietic porphyria of a Japanese family. Am J Med Genet 1997; 70:299–302.PubMedCrossRefGoogle Scholar
  112. 112.
    Boulechfar S, Da Silva V, Deybach JC et al. Heterogeneity of mutations in the uroporphyrinogen III synthase gene in congenital erythropoietic porphyria. Hum Genet 1992; 88:320–324.PubMedCrossRefGoogle Scholar
  113. 113.
    Warner CA, Yoo HW, Roberts AG, Desnick RJ. Congenital erythropoietic porphyria: identification and expression of exonic mutations in the uroporphyrinogen III synthase gene. J Clin Invest 1992; 89:693–700.PubMedCrossRefGoogle Scholar
  114. 114.
    Solis C, Aizencang GI, Astrin KH et al. Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATAI and CP2 elements cause congenital erythropoietic porphyria. J Clin Invest 2001; 107:753–762.PubMedCrossRefGoogle Scholar
  115. 115.
    Deybach JC, De Verneuil H, Boulechfar S et al. Point mutations in the uroporphyrinogen-III synthase gene in congenital erythropoietic porphyria (Gunther’s disease). Blood 1990; 75:1763–1765.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media. 2009

Authors and Affiliations

  • Heidi L. Schubert
    • 1
  • Peter T. Erskine
    • 2
  • Jonathan B. Cooper
    • 3
  1. 1.Department of BiochemistryUniversity of UtahSalt Lake CityUSA
  2. 2.Laboratory for Protein Crystallography Centre for Amyloidosis and Acute Phase ProteinsUCL Department of MedicineLondonUK
  3. 3.School of Biological SciencesUniversity of SouthamptonSouthamptoUK

Personalised recommendations