Advertisement

Tetrapyrroles pp 375-389 | Cite as

The Role of Siroheme in Sulfite and Nitrite Reductases

  • M. Elizabeth Stroupe
  • Elizabeth D. Getzoff
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Sulfite and nitrite reductases (SiRs/NiRs) use siroheme, an iron-containing isobacteriochlorin, alongside a [4Fe-4S] cluster to perform the six-electron reduction of sulfite to sulfide or nitrite to ammonia. X-ray crystallographic structures of the catalytic siroheme-containing subunit of Escherichia coli assimilatory SiR provide clues about the relationship between the SiRs and the NiRs, allowing us to use the E. coli enzyme as a model system for other siroheme-containing SiRs and NiRs.1–3 These structures also provide insight into the role of the siroheme in this powerful redox reaction, both as an anchor for the acid/base chemistry that directs substrate formation and as an electronically-flexible cofactor that drives the electron transfer reaction.

Keywords

Electron Paramagnetic Resonance High Occupied Molecular Orbital Nitrite Reductase Sulfite Reductase Direct Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crane BR, Siegel LM, Getzoff ED. Sulfite reductase structure at 1.6 A: Evolution and catalysis for reduction of inorganic an ions. Science 1995; 270(5233):59–67.CrossRefPubMedGoogle Scholar
  2. 2.
    Crane BR, Siegel LM, Getzoff ED. Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: Structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products. Biochemistry 1997; 36(40): 12120–12137.CrossRefPubMedGoogle Scholar
  3. 3.
    Crane BR, Siegel LM, Getzoff ED. Structures of the siroheme-and Fe4S4-containing active center of sulfite reductase in different states of oxidation: Heme activation via reduction-gated exogenous ligand exchange. Biochemistry 1997; 36(40):12101–12119.CrossRefPubMedGoogle Scholar
  4. 4.
    Martens JH, Barg H, Warren MJ et al. Microbial production of vitamin B12. Appl Microbiol Biotechnol 2002; 58(3):275–285.CrossRefPubMedGoogle Scholar
  5. 5.
    Siegel LM, Murphy MJ, Kamin H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: Molecular parameters and prosthetic groups. J Biol Chem 1973; 248(1):251–264.PubMedGoogle Scholar
  6. 6.
    Vega JM, Garrett RH. Siroheme: A prosthetic group of the Neurospora crassa assimilatory nitrite reductase. J Biol Chem 1975; 250(20):7980–7989.PubMedGoogle Scholar
  7. 7.
    Krueger RJ, Siegel LM. Spinach siroheme enzymes: Isolation and characterization of ferredoxinsulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Biochemistry 1982; 21(12):2892–2904.CrossRefPubMedGoogle Scholar
  8. 8.
    Crane BR, Getzoff ED. The relationship between structure and function for the sulfite reductases. Curr Opin Struct Biol 1996; 6(6):744–756.CrossRefPubMedGoogle Scholar
  9. 9.
    Harborne NR, Griffiths L, Busby SJ et al. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol Microbiol 1992; 6(19):2805–2813.CrossRefPubMedGoogle Scholar
  10. 10.
    Huynh BH, Kang L, DerVartanian DV et al. Characterization of a sulfite reductase from Desulfovibrio vulgaris. Evidence for the presence of a low-spin siroheme and an exchange-coupled siroheme-[4Fe-4S] unit. J Biol Chem 1984; 259(24):15373–15376.PubMedGoogle Scholar
  11. 11.
    Liu MC, Peck Jr HD. The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J Biol Chem 1981; 256(24):13159–13164.PubMedGoogle Scholar
  12. 12.
    Godden JW, Turley S, Teller DC et al. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 1991; 253(5018):438–442.CrossRefPubMedGoogle Scholar
  13. 13.
    Siegel LM, Rueger DC, Barber MJ et al. Escherichia coli sulfite reductase hemoprotein subunit. Prosthetic groups, catalytic parameters, and ligand complexes. J Biol Chem 1982; 257(11):6343–6350.PubMedGoogle Scholar
  14. 14.
    Siegel LM, Davis PS. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: Subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem 1974; 249(5): 1587–1598.PubMedGoogle Scholar
  15. 15.
    Zeghouf M, Fontecave M, Coves J. A simplifed functional version of the Escherichia coli sulfite reductase. J Biol Chem 2000; 275(48):37651–37656.CrossRefPubMedGoogle Scholar
  16. 16.
    Siegel LM, Davis PS, Kamin H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. 3. The Escherichia coli hemoflavoprotein: Catalytic parameters and the sequence of electron flow. J Biol Chem 1974; 249(5):1572–1586.PubMedGoogle Scholar
  17. 17.
    Siegel LM. Biochemistry of the sulfur cycle. New York: Academic Press, 1975.Google Scholar
  18. 18.
    Lancaster JR, Vega JM, Kamin H et al. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J Biol Chem 1979; 254(4):1268–1272.PubMedGoogle Scholar
  19. 19.
    Young LJ, Siegel LM. Superoxidized states of Escherichia coli sulfite reductase heme protein subunit. Biochemistry 1988; 27(16):5984–5990.CrossRefPubMedGoogle Scholar
  20. 20.
    Young LJ, Siegel LM. Activated conformers of Escherichia coli sulfite reductase heme protein subunit. Biochemistry 1988; 27(l4):4991–4999.CrossRefPubMedGoogle Scholar
  21. 21.
    Janick PA, Rueger DC, Krueger RJ et al. Characterization of complexes between Escherichia coli sulfite reductase hemoprotein subunit and its substrates sulfite and nitrite. Biochemistry 1983; 22(2):396–408.CrossRefPubMedGoogle Scholar
  22. 22.
    Janick PA, Siegel LM. Electron paramagnetic resonance and optical evidence for interaction between siroheme and Fe4S4 prosthetic groups in complexes of Escherichia coli sulfite reductase hemoprotein with added ligands. Biochemistry 1983; 22(2):504–515.CrossRefPubMedGoogle Scholar
  23. 23.
    Janick PA, Siegel LM. Electron paramagnetic resonance and optical spectroscopic evidence for interaction between siroheme and Fe4S4 prosthetic groups in Escherichia coli sulfite reductase hemoprotein subunit. Biochemistry 1982; 21(15):3538–3547.CrossRefPubMedGoogle Scholar
  24. 24.
    Madden JF, Han SH, Siegel LM et al. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 2. Fe4S4 cluster vibrational modes. Biochemistry 1989; 28(13):5471–5477.CrossRefPubMedGoogle Scholar
  25. 25.
    Han SH, Madden JF, Siegel LM et al. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 3. Bound ligand vibrational modes. Biochemistry 1989; 28(13):5477–5485.CrossRefPubMedGoogle Scholar
  26. 26.
    Han SH, Madden JF, Thompson RG et al. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 1. Siroheme vibrational modes. Biochemistry 1989; 28(13):5461–5471.CrossRefPubMedGoogle Scholar
  27. 27.
    Christner JA, Janick PA, Siegel LM et al. Mossbauer studies of Escherichia coli sulfite reductase complexes with carbon monoxide and cyanide. Exchange coupling and intrinsic properties of the [4Fe-4S] cluster. J Biol Chem 1983; 258(18):11157–11164.PubMedGoogle Scholar
  28. 28.
    Christner JA, Munck E, Janick PA et al. Mossbauer spectroscopic studies of Escherichia coli sulfite reductase. Evidence for coupling between the siroheme and Fe4S4 cluster prosthetic groups. J Biol Chem 1981; 256(5):2098–2101.PubMedGoogle Scholar
  29. 29.
    Christner JA, Munck E, Janick PA et al. Mossbauer evidence for exchange-coupled siroheme and [4Fe-4S] prosthetic groups in Escherichia coli sulfite reductase. Studies of the reduced states and of a nitrite turnover complex. J Biol Chem 1983; 258(18):11147–11156.PubMedGoogle Scholar
  30. 30.
    Stroupe ME, Getzoff ED. Sulfite reductase hemoprotein. In: Messerschmidt A, Huber R, Poulos T, Wieghardt K, eds. Handbook of Metalloproteins. Chichester: John Wiley and Sons, Ltd., 2001:1:471–485.Google Scholar
  31. 31.
    Tan J, Helms LR, Swenson RP et al. Primary structure of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough): Cloning and nucleotide sequence of the reductase gene. Biochemistry 1991; 30(41):9900–9907.CrossRefPubMedGoogle Scholar
  32. 32.
    Lui SM, Soriano A, Cowan JA. Electronic properties of the dissimilatory sulphite reductase from Desulfovibrio vulgaris (Hildenborough): Comparative studies of optical spectra and relative reduction potentials for the [Fe4S4]-sirohaem prosthetic centres. Biochem J 1994; 304(Pt 2):441–447.PubMedGoogle Scholar
  33. 33.
    Tan J, Cowan JA. Enzymatic redox chemistry: A proposed reaction pathway for the sixelectron reduction of SO3(2-) to S2-by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Biochemistry 1991; 30(36):8910–8917.CrossRefPubMedGoogle Scholar
  34. 34.
    Seki Y, Ishimoto M. Catalytic activity of the chromophore of desulfoviridin, sirohydrochlorin, in sulfite reduction in the presence of iron. J Biochem (Tokyo) 1979; 86(1):273–276.Google Scholar
  35. 35.
    Seki Y, Sogawa N, Ishimoto M. Siroheme as an active catalyst in sulfite reduction. J Biochem (Tokyo) 1981; 90(5):1487–1492.Google Scholar
  36. 36.
    Soriano A, Cowan JA. Sulfite reductase: Active site residues are “noncatalytic”. Comparaison of reaction energetics for enzyme-and siroheme-catalyzed reduction of inorganic substrates. J Am Chem Soc 1995; 117:4724–4725.CrossRefGoogle Scholar
  37. 37.
    Jentzen W, Ma JG, Shelnutt JA. Conservation of the conformation of the porphyrin macrocycle in hemoproteins. Biophys J 1998; 74(2 Pt 1):753–763.CrossRefPubMedGoogle Scholar
  38. 38.
    Shelnutt JA, Song XZ, Ma JG et al. Nonplanar porphyrins and their significance in proteins. Chem Soc Rev 1998; 27:31–41.CrossRefGoogle Scholar
  39. 39.
    Chang CK, Hanson LK, Richardson PF et al. Pi cation radicals of ferrous and free base isobacteriochlorins: Models for siroheme and sirohydrochlorin. Proc Natl Acad Sci USA 1981; 78(8):2652–2656.CrossRefPubMedGoogle Scholar
  40. 40.
    Chang CK, Fajer J. Models of siroheme and sirohydrochlorin. Pi cation radicals of iron(II) isobacteriochlorin. J Am Chem Soc 1980; 102(2):848–851.CrossRefGoogle Scholar
  41. 41.
    Aparicio PJ, Knaff DB, Malkin R. The role of an iron-sulfur center and siroheme in spinach nitrite reductase. Arch Biochem Biophys 1975; 169(1):102–107.CrossRefPubMedGoogle Scholar
  42. 42.
    Schiffer A, Parey K, Warkentin E et al. Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Mol Biol 2008; 379:1063–1074.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.The Scripps Research InstituteLa JollaUSA

Personalised recommendations