Tetrapyrroles pp 317-329 | Cite as

The Regulation of Cobalamin Biosynthesis

  • Jeffrey G. Lawrence
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Expositions on the regulation of biochemical pathways usually succeed in disappointing at least half of their potential audience. From a holistic standpoint, one could view gene regulation as the embodiment of the physiological significance of the encoded gene products. If one understood when, where and why genes were either active or inactive, one would gain insight into the selective forces retaining those genes within a genome. From a reductionist standpoint, gene regulation can be achieved in almost countless ways, each offering at worst insight into how a cell is controlling the dynamic expression of its inherently static genetic material and at best uncovering previously undiscovered mechanisms by which the activities of gene products are controlled. From an evolutionary standpoint, both views may differ between different organisms, allowing either fruitful comparative biology when the differences are recognized, or potentially misleading extrapolation when they are not.


Axial Ligand Paracoccus Denitrificans Sulfur Starvation Cobalamin Biosynthesis Cobalamin Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Debussche L, Thibaut D, Danzer M et al. Biosynthesis of vitamin B12: Structure of precorrin-3B, the trimethylated substrate of the enzyme catalyzing ring contraction. J Chem Soc Chem Commun 1993; 1993:1100–1103.CrossRefGoogle Scholar
  2. 2.
    Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): Synthesis and biological significance. Annu Rev Microbiol 1996; 50:137–181.CrossRefPubMedGoogle Scholar
  3. 3.
    Benner SA, Ellington AD, Tauer A. Modern metabolism as a palimsest of the RNA world. Proc Natl Acad Sci USA 1989; 86:7054–7058.CrossRefPubMedGoogle Scholar
  4. 4.
    Eschenmoser A. Vitamin B12: Experiments concerning the origin of its molecular structure. Angew Chem Int Ed Eng 1988; 27:5–39.CrossRefGoogle Scholar
  5. 5.
    Stupperich E, Eisinger HJ, Schurr S. Corrinoids in anaerobic bacteria. FEMS Microbiol Rev 1990; 87:355–360.CrossRefGoogle Scholar
  6. 6.
    Brushaber KR, GA OT, Escalante-Semerena JC. CobD, a novel enzyme with L-threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-2-propanol O-2-phosphate, a proposed new intermediate in cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 1998; 273(5):2684–2691.CrossRefPubMedGoogle Scholar
  7. 7.
    Roth JR, Lawrence JG, Rubenfield M et al. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 1993; 175:3303–3316.PubMedGoogle Scholar
  8. 8.
    Battersby AR. How nature builds the pigments of life: The conquest of vitamin B12. Science 1994; 264:1551–1557.CrossRefPubMedGoogle Scholar
  9. 9.
    Raux E, Schubert HL, Warren MJ. Biosynthesis of cobalamin (vitamin B12): A bacterial conundrum. Cell Mol Life Sci 2000; 57(13–l4):1880–1893.CrossRefPubMedGoogle Scholar
  10. 10.
    Roessner CA, Santander PJ, Scott AI. Multiple biosynthetic pathways for vitamin B12: Variations on a central theme. Vitam Horm 2001; 61:267–297.CrossRefPubMedGoogle Scholar
  11. 11.
    Smith DA, Childs JD. Methionine genes and enzymes of Salmonella typhimurium. Heredity 1966; 21:265–286.CrossRefPubMedGoogle Scholar
  12. 12.
    Greene RC. Biosynthesis of methionine. In: Neidhardt FC, Curtiss IIIrd R, Ingraham JL, Lin ECC, Low KB, Magasanik B et al, eds. Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. 2nd ed. Washington, DC: American Society for Microbiology, 1996:542–560.Google Scholar
  13. 13.
    Warren MJ, Roessner CA, Santeander PJ et al. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 1990; 265(3):725–729.PubMedGoogle Scholar
  14. 14.
    Warren MJ, Bolt EL, Roessner CA et al. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J 1994; 302(3):837–844.PubMedGoogle Scholar
  15. 15.
    Fazzio TG, Roth JR. Evidence that the CysG protein catalyzes the first reaction specific to B12 synthesis in Salmonella tyhimurium: Insertion of cobalt. J Bacteriol 1996; 178:6952–6959.PubMedGoogle Scholar
  16. 16.
    Raux E, Thermes C, Heathcote P et al. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol 1997; 179(10):3202–3212.PubMedGoogle Scholar
  17. 17.
    Schubert HL, Raux E, Wilson KS et al. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. Biochemistry 1999; 38(33): 10660–10669.CrossRefPubMedGoogle Scholar
  18. 18.
    Brindley AA, Raux E, Leech HK et al. A story of chelatase evolution: Identification and characterization of a small 13–15 kDa “ancestral” copbaltochelatase (CbiXS) in the Archaea. J Biol Chem 2003; 278(25):22388–22395.CrossRefPubMedGoogle Scholar
  19. 19.
    Goldman BS, Roth JR. Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J Bacteriol 1993; 175(5):1457–1466.PubMedGoogle Scholar
  20. 20.
    Leech HK, Raux-Deery E, Heathcote P et al. Production of cobalamin and sirohaem in Bacillus megaterium: An investigation into the role of the branchpoint chelatases sirohydrochlorin ferrochelatase (SirB) and sirohydrochlorin cobalt chelatase (CbiX). Biochem Soc Trans 2002; 30(4):610–613.CrossRefPubMedGoogle Scholar
  21. 21.
    Raux E, Leech HK, Beck R et al. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 2003; 370(2):505–516.CrossRefPubMedGoogle Scholar
  22. 22.
    Blanche F, Debussche L, Thibaut D et al. Purification and characterization of S-adenosylmethionine: Uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J Bacteriol 1989; 171:4222–4231.PubMedGoogle Scholar
  23. 23.
    Anderson PJ, Entsch B, McKay DB. A gene, cobA + hemD, from Selenomonas ruminantium encodes a bifunctional enzyme involved in the synthesis of vitamin B12. Gene 2001; 281(l–2):63–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Kolko MM, Kapetanovich LA, Lawrence JG. Alternative pathways for siroheme synthesis in Klebsiella aerogenes. J Bacteriol 2001; 183:328–335.CrossRefPubMedGoogle Scholar
  25. 25.
    Childs JD, Smith DA. New methionine structural gene in Salmonella typhimurium. J Bacteriol 1969; 100:377–382.PubMedGoogle Scholar
  26. 26.
    Chang GW, Chang JT. Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature (London) 1975; 254:150–151.CrossRefGoogle Scholar
  27. 27.
    Faust LP, Babior BM. Overexpression, purification, and some properties of the adocbl-dependent ethanolamine ammonia-lyase from Salmonella typhimurium. Arch Biochem Biophys 1992; 294(1):50–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Roof DM, Roth JR. Functions required for vitamin-B12 dependent ethanolamine utilization in Salmonella typhimurium. J Bacteriol 1989; 171:3316–3323.PubMedGoogle Scholar
  29. 29.
    Bobik TA, Xu Y, Jeter RM et al. Propanediol utilization genes (pdu) of Salmonella typhimurium: Three genes for the propanediol dehydratase. J Bacteriol 1997; 179(21):6633–6639.PubMedGoogle Scholar
  30. 30.
    Jeter RM. Cobalamin dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol 1990; 136:887–896.PubMedGoogle Scholar
  31. 31.
    Bobik TA, Ailion M, Roth JR. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol 1992; 174:2253–2266.PubMedGoogle Scholar
  32. 32.
    Rondon MR, Escalante-Semerena JC. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol 1992; 174:2267–2272.PubMedGoogle Scholar
  33. 33.
    Chen P, Andersson DI, Roth JR. The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 1994; 176:5474–5482.PubMedGoogle Scholar
  34. 34.
    Ailion M, Bobik TA, Roth JR. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium. J Bacteriol 1993; 175:7200–7208.PubMedGoogle Scholar
  35. 35.
    Rondon MR, Escalante-Semerena JC. Integration host factor is required for 1,2-propanediol-dependent transcription of the cob/pdu regulon in Salmonella typhimurium LT2. J Bacteriol 1997; 179(11):3797–3800.PubMedGoogle Scholar
  36. 36.
    Rondon MR, Escalante-Semerena JC. High levels of transcription factor RpoS (sigma S) in mviA mutants negatively affect 1,2-propanediol-dependent transcription of the cob/pdu regulon of Salmonella typhimurium LT2. FEMS Microbiol Lett 1998; 169(1):147–153.PubMedGoogle Scholar
  37. 37.
    Cameron B, Briggs K, Pridmore S et al. Cloning and analysis of genes involved in coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 1989; 171:547–557.PubMedGoogle Scholar
  38. 38.
    Shearer N, Hinsley AP, Van Spanning RJ et al. Anaerobic growth of Paracoccus denitrificans requires cobalamin: Characterization of cobK and cobJ genes. J Bacteriol 1999; 181(22):6907–6913.PubMedGoogle Scholar
  39. 39.
    Gleason FK, Wood JM. Ribonucleotide reductase in blue-green algae: Dependence on adenosylcobalamin. Science 1976; 192(4246): 1343–1344.CrossRefPubMedGoogle Scholar
  40. 40.
    Cowles JR, Evans HJ. Some properties of the ribonucleotide reductase from Rhizobium meliloti. Arch Biochem Biophys 1968; 127(1):770–778.CrossRefPubMedGoogle Scholar
  41. 41.
    Sato K, Inukai S, Shimizu S. Vitamin B12-dependent methionine synthesis in Rhizobium meliloti. Biochem Biophys Res Commun 1974; 60(2):723–728.CrossRefPubMedGoogle Scholar
  42. 42.
    Galibert F, Finan TM, Long SR et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001; 293(5530):668–672.CrossRefPubMedGoogle Scholar
  43. 43.
    Pollich M, Klug G. Identification and sequence analysis of genes involved in late steps in cobalamin (vitamin B12) synthesis in Rhodobacter capsulatus. J Bacteriol 1995; 177(15):4481–4487.PubMedGoogle Scholar
  44. 44.
    Escalante-Semerena JC, Johnson MG, Roth JR. The CobII and CobIII regions of the cobalamin (vitamin B12) biosynthetic operon of Salmonella typhimurium. J Bacteriol 1992; 174(1):24–29.PubMedGoogle Scholar
  45. 45.
    Lawrence JG, Roth JR. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli. J Bacteriol 1995; 177:6371–6380.PubMedGoogle Scholar
  46. 46.
    Cocks GT, Aguilar J, Lin ECC. Evolution of L-1,2 propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism. J Bacteriol 1974; 118:83–88.PubMedGoogle Scholar
  47. 47.
    Hacking AJ, Aguilar J, Lin ECC. Evolution of propanediol utilization in Escherichia coli. Mutants with improved substrate scavenging power. J Bacteriol 1978; 136:522–530.PubMedGoogle Scholar
  48. 48.
    Lawrence JG, Roth JR. Evolution of coenzyme B12 synthesis among enteric bacteria: Evidence for loss and reacquisition of a multigene complex. Genetics 1996; 142:11–24.PubMedGoogle Scholar
  49. 49.
    Chen P, Ailion M, Bobik T et al. Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. J Bacteriol 1995; 177(19):5401–5410.PubMedGoogle Scholar
  50. 50.
    Rondon MR, Escalante-Semerena JC. In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella typhimurium LT2. J Bacteriol 1996; 178(8):2196–2203.PubMedGoogle Scholar
  51. 51.
    Andersson D. Kinetics of cobalamin repression of the cob operon in Salmonella typhimurium. FEMS Microbiol Lett 1995; 124:89–94.CrossRefGoogle Scholar
  52. 52.
    Kadner RJ. Repression of synthesis of the vitamin B12 receptor in Escherichia coli. J Bacteriol 1978; 136(3):1050–1057.PubMedGoogle Scholar
  53. 53.
    Lundrigan MD, Kadner RJ. Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB regulation. J Bacteriol 1989; 171:154–161.PubMedGoogle Scholar
  54. 54.
    Lundrigan MD, Koster W, Kadner RJ. Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12. Proc Natl Acad Sci USA 1991; 88:1479–1483.CrossRefPubMedGoogle Scholar
  55. 55.
    Richter-Dahlfors AA. Cobalamin (vitamin B12) repression of the cob operon in Salmonella typhimurium requires sequences within the leader and the first translated open reading frame. Mol Microbiol 1992; 6(6):743–749.CrossRefPubMedGoogle Scholar
  56. 56.
    Richter-Dahlfors AA, Ravnum S, Andersson DI. Vitamin B12 repression of the cob operon in Salmonella typhimurium: Translational control of the cbiA gene. Mol Microbiol 1994; 13(3):541–553.CrossRefPubMedGoogle Scholar
  57. 57.
    Ailion M, Roth JR. Repression of the cob operon of Salmonella typhimurium by adenosylcobalamin is influenced by mutations in the pdu operon. J Bacteriol 1997; 179(19):6084–6091.PubMedGoogle Scholar
  58. 58.
    Franklund CV, Kadner RJ. Multiple transcribed elements control expression of the Escherichia coli btuB gene. J Bacteriol 1997; 179(12):4039–4042.PubMedGoogle Scholar
  59. 59.
    Ravnum S, Andersson DI. An adenosyl-cobalamin (coenzyme-B12)-repressed translational enhancer in the cob mRNA of Salmonella typhimurium. Mol Microbiol 2001; 39(6):1585–1594.CrossRefPubMedGoogle Scholar
  60. 60.
    Nahvi A, Sudarsan N, Ebert MS et al. Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9(9): 1043.CrossRefPubMedGoogle Scholar
  61. 61.
    Ravnum S, Andersson DI. Vitamin B12 repression of the btuB gene in Salmonella typhimurium is mediated via a translational control which requires leader and coding sequences. Mol Microbiol 1997; 23(1):35–42.CrossRefPubMedGoogle Scholar
  62. 62.
    Epshtein V, Mironov AS, Nudler E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 2003; 100(9):5052–5056.CrossRefPubMedGoogle Scholar
  63. 63.
    McDaniel BA, Grundy FJ, Artsimovitch I et al. Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 2003; 100(6):3083–3088.CrossRefPubMedGoogle Scholar
  64. 64.
    Draper DE, Gluick C, Schlax PJ. Pseudoknots, RNA folding, and translational regulation. In: Simons RW, Grunberg-Manago M, eds. RNA Structure and Functions. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1998:415–436.Google Scholar
  65. 65.
    Kadner RJ, Liggins GL. Transport of vitamin B12 in Escherichia coli: Genetic studies. J Bacteriol 1973; 115(2):514–521.PubMedGoogle Scholar
  66. 66.
    Bassford Jr PJ, Bradbeer C, Kadner RJ et al. Transport of vitamin B12 in tonB mutants of Escherichia coli. J Bacteriol 1976; 128(1):242–247.PubMedGoogle Scholar
  67. 67.
    BassfordJr PJ, Kadner RJ. Genetic analysis of components involved in vitamin B12 uptake in Escherichia coli. J Bacteriol 1977; 132(3):96–105.Google Scholar
  68. 68.
    Cadieux N, Bradbeer C, Reeger-Schneider E et al. Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. J Bacteriol 2002; 184(3):706–717.CrossRefPubMedGoogle Scholar
  69. 69.
    Van Bibber M, Bradbeer C, Clark N et al. A new class of cobalamin transport mutants (btuF) provides genetic evidence for a periplasmic binding protein in Salmonella typhimurium. J Bacteriol 1999; 181(17):5539–5541.PubMedGoogle Scholar
  70. 70.
    DeVeaux LC, Kadner RJ. Transport of vitamin B12 in Escherichia coli: Cloning of the btuCD region. J Bacteriol 1985; 162(3):888–896.PubMedGoogle Scholar
  71. 71.
    DeVeaux LC, Clevenson DS, Bradbeer C et al. Identification of the BtuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli. J Bacteriol 1986; 167(3):920–927.Google Scholar
  72. 72.
    Friedrich MJ, DeVeaux LC, Kadner RJ. Nucleotide sequence of the btuCED genes involved in vitamin B12 transport in Escherichia coli and homology with components of periplasmicbinding-protein-dependent transport systems. J Bacteriol 1986; 167(3):928–934.PubMedGoogle Scholar
  73. 73.
    Roper JM, Raux E, Brindley AA et al. The enigma of cobalamin (Vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. J Biol Chem 2000; 275(51):40316–40323.CrossRefPubMedGoogle Scholar
  74. 74.
    Lawrence JG, Roth JR. Selfish operons: Horizontal transfer may drive the evolution of gene clusters. Genetics 1996; 143:1843–1860.PubMedGoogle Scholar
  75. 75.
    Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 1998; 95:9413–9417.CrossRefPubMedGoogle Scholar
  76. 76.
    Lawrence JG, Roth JR. Genomic flux: Genome evolution by gene loss and acquisition. In: Charlebois RL, ed. Organization of the Prokaryotic Genome. Washington, DC: ASM Press, 1999:263–289.Google Scholar
  77. 77.
    Vitreschak AG., Rodionov DA, Mironov AA, Gelfand MS. Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA 2003; 9:1084–1097.CrossRefPubMedGoogle Scholar
  78. 78.
    Nahvi A, Barrick JE, Breaker RR. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 2004; 32:143–150.CrossRefPubMedGoogle Scholar
  79. 79.
    Nahvi A, Sudarsan N, Ebert MS et al. Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9:1043–1049.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations