Advertisement

Biosynthesis of 5-Aminolevulinic Acid

  • Dieter Jahn
  • Dirk W. Heinz
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

5-Aminolevulinic acid (ALA) is the general precursor of all known tetrapyrroles. Currently, two different biosynthetic routes for ALA formation are known. Humans, animals, fungi and the α-group of the proteobacteria employ the one-step-condensation of succinyl-coenzyme A and glycine catalyzed by pyridoxal 5′-phosphate-dependent ALA synthase. In plants, algae, archaea and all other bacteria ALA is formed by two enzymes. The initial substrate glutamyl-tRNA is synthesized by glutamyl-tRNA synthetase and supplied both to protein and to tetrapyrrole biosynthesis. During the first committed step of ALA synthesis a NADPH-dependent glutamyl-tRNA reductase reduces glutamyl-tRNA to form glutamate-1-semialdehyde. The aldehyde is subsequendy transaminated by glutamate-1-semialdehyde-2,1-aminomutase to yield ALA. Evidence for metabolic channeling of the reactive aldehyde between glutamyl-tRNA reductase and the aminomutase is outlined based on the structures of both enzymes. The enzymatic mechanisms deduced from biochemical investigations and recently solved crystal structures are described for all participating enzymes.

Keywords

Hydride Transfer Tetrapyrrole Biosynthesis Puromycin Aminonucleoside External Aldimine Thioester Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shemin D, Russell CS. Delta-aminoievulinic acid, its role in the biosynthesis of porphyrins and purines. J American Chem Soc 1953; 75:4873–4875.CrossRefGoogle Scholar
  2. 2.
    Beale SI, Castelfranco PA. 14C incorporation from exogenous compounds into-aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun 1973; 52:143–149.CrossRefPubMedGoogle Scholar
  3. 3.
    Jahn D, Verkamp E, Söll D. Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 1992; 17:215–218.CrossRefPubMedGoogle Scholar
  4. 4.
    Ferreira GC. 5-Aminolevulinate synthase and mammalian heme biosynthesis. In: Ferreira GC, Moura JJG, Franco R, eds. Iron Metabolism. Weinheim, Germany: Wiley-VCH, 1999:15–29.CrossRefGoogle Scholar
  5. 5.
    Kikuchi G, Kumar AM, Tamalge P et al. The enzymatic synthesis of d-aminolevulinic acid. J Biol Chem 1958; 233:1214–1219.PubMedGoogle Scholar
  6. 6.
    Gibson KD, Laver WG, Neuberger A. Initial steps in the biosynthesis of porphyrins. The formation of d-aminolevulinic acid from glycine and succinyl-CoA by particles of chicken erythrocytes. Biochem J 1958; 70:71–81.PubMedGoogle Scholar
  7. 7.
    Jordan PM. New comprehensive biochemistry; No. 19. In: Neuberger A, Van Deenen LLM, eds. Biosynthesis of Tetrapyrroles. Amsterdam: Elsevier, 1991.Google Scholar
  8. 8.
    Bolt EL, Kryszak L, Zeilstra-Ryalls J et al. Characterization of the Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli. Eur J Biochem 1999; 265:290–299.CrossRefPubMedGoogle Scholar
  9. 9.
    Shoolingin-Jordan PM, Al-Daihan S, Alexeev D et al. 5-Aminolevulinic acid synthase: Mechanism, mutations and medicine. Biochim Biophys Acta 2003; 1647:361–366.PubMedGoogle Scholar
  10. 10.
    Zhang J, Ferreira GC. Transient state kinetic investigation of 5-aminolevulinate synthase reaction mechanism. J Biol Chem 2002; 277:44660–44669.CrossRefPubMedGoogle Scholar
  11. 11.
    Hunter GA, Ferreira GC. Lysine-313 of 5-aminolevulinate synthase acts as a general base during formation of the quinonoid reaction intermediates. Biochemistry 1999; 38:3711–3718.CrossRefPubMedGoogle Scholar
  12. 12.
    Hunter GA, Ferreira GC. Presteady-state reaction of 5-aminolevulinate synthase. Evidence for a rate-determining product release. J Biol Chem 1999; 274:12222–12228.CrossRefPubMedGoogle Scholar
  13. 13.
    Tan D, Harrison T, Hunter GA et al. Role of arginine 439 in substrate binding of 5-aminolevulinate synthase. Biochemistry 1998; 37:1478–1484.CrossRefPubMedGoogle Scholar
  14. 14.
    Gong J, Hunter GA, Ferreira GC. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5′-phosphate cofactor. Biochemistry 1998; 37:3509–3517.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang DD, Wang WY, Gough SP et al. delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 1984; 225:1482–1484.CrossRefPubMedGoogle Scholar
  16. 16.
    Schon A, Krupp G, Gough S et al. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 1986; 322:281–284.CrossRefPubMedGoogle Scholar
  17. 17.
    Sekine S, Nureki O, Sakamoto K et al. Major identity determinants in the “augmented D helix” of tRNA(Glu) from Escherichia coli. J Mol Biol 1996; 256:685–700.CrossRefPubMedGoogle Scholar
  18. 18.
    Sekine S, Nureki O, Tateno M et al. The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli. Eur J Biochem 1999; 261:354–360.CrossRefPubMedGoogle Scholar
  19. 19.
    Madore E, Florentz C, Giege R et al. Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34. Eur J Biochem 1999; 266:1128–1135.CrossRefPubMedGoogle Scholar
  20. 20.
    Kruger MK, Sorensen MA. Aminoacylation of hypomodified tRNAGlu in vivo. J Mol Biol 1998; 284:609–620.CrossRefPubMedGoogle Scholar
  21. 21.
    Stange-Thomann N, Thomann HU, Lloyd AJ et al. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 1994; 91:7947–7951.CrossRefPubMedGoogle Scholar
  22. 22.
    Freist W, Gauss DH, Soll D et al. Glutamyl-tRNA sythetase. Biol Chem 1997; 378:1313–1329.PubMedGoogle Scholar
  23. 23.
    Tumbula DL, Becker HD, Chang WZ et al. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000; 407:106–110.CrossRefPubMedGoogle Scholar
  24. 24.
    Nureki O, Vassylyev DG, Katayanagi K et al. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science 1995; 267:1958–1965.CrossRefPubMedGoogle Scholar
  25. 25.
    Sekine S, Nureki O, Shimada A et al. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol 2001; 8:203–206.CrossRefPubMedGoogle Scholar
  26. 26.
    Schubert WD, Moser J, Schauer S et al. Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth Res 2002; 74:205–215.CrossRefPubMedGoogle Scholar
  27. 27.
    Moser J, Schubert WD, Heinz DW et al. Structure and function of glutamyl-tRNA reductase involved in 5-aminolaevulinic acid formation. Biochem Soc Trans 2002; 30:579–584.CrossRefPubMedGoogle Scholar
  28. 28.
    Moser J, Lorenz S, Hubschwerlen C et al. Methanopyrus kandleri Glutamyl-tRNA Reductase. J Biol Chem 1999; 274:30679–30685.CrossRefPubMedGoogle Scholar
  29. 29.
    Moser J, Schubert WD, Beier V et al. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 2001; 20:6583–6590.CrossRefPubMedGoogle Scholar
  30. 30.
    Schauer S, Chaturvedi S, Randau L et al. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 2002; 277:48657–48663.CrossRefPubMedGoogle Scholar
  31. 31.
    Krieger R, Rompf A, Schobert M et al. The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and integration host factor. Mol Genet Genomics 2002; 267:409–417.CrossRefPubMedGoogle Scholar
  32. 32.
    Schobert M, Jahn D. Regulation of heme biosynthesis in nonphototrophic bacteria. J Mol Microbiol Biotechnol 2002; 4:287–294.PubMedGoogle Scholar
  33. 33.
    Wang L, Elliott M, Elliott T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 1999; 181:1211–1219.PubMedGoogle Scholar
  34. 34.
    Wang L, Wilson S, Elliott T. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol 1999; 181:6033–6041.PubMedGoogle Scholar
  35. 35.
    Kumar AM, Csankovszki G, Soll D. A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. Plant Mol Biol 1996; 30:419–426.CrossRefPubMedGoogle Scholar
  36. 36.
    Tanaka R, Yoshida K, Nakayashiki T et al. Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 1996; 110:1223–1230.CrossRefPubMedGoogle Scholar
  37. 37.
    Sangwan I, O’Brian MR. Expression of a soybean gene encoding the tetrapyrrole-synthesis enzyme glutamyl-tRNA reductase in symbiotic root nodules. Plant Physiol 1999; 119:593–598.CrossRefPubMedGoogle Scholar
  38. 38.
    McCormac AC, Fischer A, Kumar AM et al. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 2001; 25:549–561.CrossRefPubMedGoogle Scholar
  39. 39.
    Bougri O, Grimm B. Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 1996; 9:867–878.CrossRefPubMedGoogle Scholar
  40. 40.
    Smith MA, Grimm B, Kannangara CG et al. Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus. Proc Natl Acad Sci USA 1991; 88:9775–9779.CrossRefPubMedGoogle Scholar
  41. 41.
    Hag LL, Jahn D. Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 1992; 31:7143–7151.CrossRefGoogle Scholar
  42. 42.
    Pugh CE, Harwood JL, John RA. Mechanism of glutamate semialdehyde aminotransferase. Roles of diamino-and dioxo-intermediates in the synthesis of aminolevulinate. J Biol Chem 1992; 267:1584–1588.PubMedGoogle Scholar
  43. 43.
    Friedmann HC, Duban ME, Valasinas A et al. The enantioselective participation of (S)-and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 1992; 185:60–68.CrossRefPubMedGoogle Scholar
  44. 44.
    Grimm B, Smith MA, von Wettstein D. The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 1992; 206:579–585.CrossRefPubMedGoogle Scholar
  45. 45.
    Smith MA, Kannangara CG, Grimm B. Glutamate 1-semialdehyde aminotransferase: Anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 1992; 31:11249–11254.CrossRefPubMedGoogle Scholar
  46. 46.
    Brody S, Andersen JS, Kannangara CG et al. Characterization of the different spectral forms of glutamate 1-semialdehyde aminotransferase by mass spectrometry. Biochemistry 1995; 34:15918–15924.CrossRefPubMedGoogle Scholar
  47. 47.
    Smith MA, King PJ, Grimm B. Transient-state kinetic analysis of Synechococcus glutamate 1-semialdehyde aminotransferase. Biochemistry 1998; 37:319–329.CrossRefPubMedGoogle Scholar
  48. 48.
    Contestabile R, Jenn T, Akhtar M et al. Reactions of glutamate 1-semialdehyde aminomutase with R-and S-enantiomers of a novel, mechanism-based inhibitor, 2,3-diaminopropyl sulfate. Biochemistry 2000; 39:3091–3096.CrossRefPubMedGoogle Scholar
  49. 49.
    Hennig M, Grimm B, Contestabile R et al. Crystal structure of glutamate-1-semialdehyde aminomutase: An alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 1997; 94:4866–4871.CrossRefPubMedGoogle Scholar
  50. 50.
    Contestabile R, Angelaccio S, Maytum R et al. The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase. J Biol Chem 2000; 275:3879–3886.CrossRefPubMedGoogle Scholar
  51. 51.
    Grimm B. Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase. Proc Nad Acad Sci USA 1990; 87:4169–4173.CrossRefGoogle Scholar
  52. 52.
    Hag LL, Kumar AM, Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 1994; 6:265–275.Google Scholar
  53. 53.
    Hungerer C, Troup B, Romling U et al. Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene. Mol Gen Genet 1995; 248:375–380.CrossRefPubMedGoogle Scholar
  54. 54.
    Vavilin DV, Vermaas WF. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Plant Physiol 2002; 115:9–24.CrossRefGoogle Scholar
  55. 55.
    Herman CA, Im CS, Beale SI. Light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase in carotenoid-deficient Chlamydomonas reinhardtii cells. Plant Mol Biol 1999; 39:289–297.CrossRefPubMedGoogle Scholar
  56. 56.
    Im CS, Beale SI. Identification of possible signal transduction components mediating light induction of the Gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas reinhardtii. Planta 2000; 210:999–1005.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen L, Keramati L, Helmann JD. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci USA 1995; 92:8190–8194.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
  2. 2.Department of Structural BiologyGerman Research Center for BiotechnologyBraunschweigGermany

Personalised recommendations