Advertisement

Tetrapyrroles pp 286-299 | Cite as

Vitamin B12: Biosynthesis of the Corrin Ring

  • Ross M. Graham
  • Evelyne Deery
  • Martin J. Warren
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Vitamin B12 is a cobalt-containing modified tetrapyrrole, whose structural complexity and beguiling chemistry has fascinated scientists for over 80 years. As with all modified tetrapyrroles, its structure is derived from uroporphyrinogen III. This transformation requires a large number of enzyme-mediated steps that result in peripheral methylation, cobalt chelation, ring contraction, decarboxylation, amidation and adenosylation. There are two related though genetically distinct routes for cobalamin biosynthesis, which are referred to as the aerobic and anaerobic pathways. In this chapter the biosynthesis of the corrin ring component of vitamin B12 along these two routes is described.

Keywords

Anaerobic Pathway Ring Contraction Aerobic Pathway Corrin Ring Cobalamin Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stabler SP, Allen RH. Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr 2004; 24: 299–326.CrossRefPubMedGoogle Scholar
  2. 2.
    Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 1996; 50:137–181.CrossRefPubMedGoogle Scholar
  3. 3.
    Warren MJ, Scott AI. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem Sci 1990; 15: 486–491.CrossRefPubMedGoogle Scholar
  4. 4.
    Warren MJ, Raux E, Schubert HL et al. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 2002; 19: 390–412.CrossRefPubMedGoogle Scholar
  5. 5.
    Roessner CA, Santander PJ, Scott AI. Multiple biosynthetic pathways for vitamin B12: variations on a central theme. Vitamins and Hormones 2001; 61: 267–297.CrossRefPubMedGoogle Scholar
  6. 6.
    Raux E, Schubert HL, Warren MJ. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell Mol Life Sci 2000; 57: 1880–1893.CrossRefPubMedGoogle Scholar
  7. 7.
    Blanche F, Cameron B, Crouzet J et al. Vitamin B12: How the problem of its biosynthesis was solved. Angew Chem Int Ed Engl 1995; 34(4):383–411.CrossRefGoogle Scholar
  8. 8.
    Battersby A.R. How nature builds the pigments of life: the conquest of vitamin B12. Science 1994; 264(5165):1551–1557.CrossRefPubMedGoogle Scholar
  9. 9.
    Uzar HC, Battersby AR, Carpenter TA et al. Biosynthesis of porphyrins and related macrocycles. 28. Development of a pulse labeling method to determine the c-methylation sequence for vitamin-B12. Chem. Soc Perkin Trans I 1987; 1689–1696.Google Scholar
  10. 10.
    Blanche F, Debussche L, Thibaut D et al. Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J Bacteriol 1989; 171(8):4222–4231.PubMedGoogle Scholar
  11. 11.
    Robin C, Blanche F, Cauchois L et al. Primary structure, expression in Escherichia coli, and properties of S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase from Bacillus megaterium. J Bacteriol 1991; 173(15): 4893–4896.PubMedGoogle Scholar
  12. 12.
    Blanche F, Robin C, Couder M et al. Purification, characterization, and molecular cloning of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Methanobacterium ivanovii. J Bacteriol 1991; 173(15):4637–4645.PubMedGoogle Scholar
  13. 13.
    Vevodova J, Graham RM, Raux E et al. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. J Mol Biol 2004; 344(2): 419–433.CrossRefPubMedGoogle Scholar
  14. 14.
    Stroupe ME, Leech HK, Daniels DS et al. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Biol 2003; 10(12): 1064–1073.CrossRefPubMedGoogle Scholar
  15. 15.
    Schubert HL, Wilson KS, Raux E et al. The X-ray structure of a cobalamin biosynthetic enzyme, cobaltprecorrin-4 methyltransferase. Nat Struct Biol 1998; 5(7): 585–592.CrossRefPubMedGoogle Scholar
  16. 16.
    Schubert HL, Blumenthal RM, Cheng X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 2003; 28(6):329–335.CrossRefPubMedGoogle Scholar
  17. 17.
    Roth JR, Lawrence JG, Rubenfield M et al. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 1993; 175(11): 3303–3316.PubMedGoogle Scholar
  18. 18.
    Debussche L, Thibaut D, Cameron B et al. Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J Bacteriol 1993; 175(22): 7430–7440.PubMedGoogle Scholar
  19. 19.
    Thibaut D, Couder M, Crouzet J et al. Assay and purification of S-adenosyl-L-methionine:precorrin-2 methyltransferase from Pseudomonas denitrificans. J Bacteriol 1990; 172(11): 6245–6251.PubMedGoogle Scholar
  20. 20.
    Warren MJ, Roessner CA, Ozaki S et al. Enzymatic synthesis and structure of precorrin-3, a trimethyldipyrrocorphin intermediate in vitamin B12 biosynthesis. Biochemistry 1992; 31(2):603–609.CrossRefPubMedGoogle Scholar
  21. 21.
    Scott AI, Roessner CA, Stolowich NJ et al. Biosynthesis of vitamin B12. Discovery of the enzymes for oxidative ring contraction and insertion of the fourth methyl group. Febs Letters 1993; 331(l–2):105–108.CrossRefPubMedGoogle Scholar
  22. 22.
    Spencer JB, Stolowich NJ, Santander PJ et al. Mechanism of the ring contraction step in vitamin-B12 biosynthesis—the origin and subsequent fate of the oxygen functionalities in precorrin-3X. J Am Chem Soc 1994; 116:4991–4992.CrossRefGoogle Scholar
  23. 23.
    Debussche L, Thibaut D, Danzer M et al. Biosynthesis of vitamin B12: Structure of precorrin-3B, the trimethylated substrate of the enzyme catalysing ring contraction. J Chem Soc Chem Commun 1993; 1100–1103.Google Scholar
  24. 24.
    McGoldrick HM, Roessner CA, Raux E et al. Identification and characterization of a novel vitamin B12 (cobalamin) biosynthetic enzyme (CobZ) from Rhodobacter capsulatus, containing flavin, heme, and Fe-S cofactors. J Biol Chem 2005; 280(2): 1086–1094.CrossRefPubMedGoogle Scholar
  25. 25.
    Roessner CA, Spencer JB, Ozaki, S et al. Overexpression in Escherichia coli of 12 vitamin B12 biosynthetic enzymes. Protein Expression and Purification 1995; 6(2):155–163.CrossRefPubMedGoogle Scholar
  26. 26.
    Thibaut D, Debussche L, Frechet D et al. Biosynthesis of vitamin-B12—the structure of factor-IV, the oxidized form of precorrin-4. J Chem Soc Chem Commun 1993; 513–515.Google Scholar
  27. 27.
    Min CH, Atshaves BP, Roessner CA et al. Isolation, structure, and genetically-engineered synthesis of precorrin-5, the pentamethylated intermediate of vitamin-B12 biosynthesis. J Am Chem Soc 1993; 115:10380–10381.CrossRefGoogle Scholar
  28. 28.
    Thibaut D, Debussche L, Blanche F. Biosynthesis of vitamin B12: isolation of precorrin-6x, a metal-free precursor of the corrin macrocycle retaining five S-adenosylmethioninederived peripheral methyl groups. Proc Natl Acad Sci USA 1990; 87(22):8795–8799.CrossRefPubMedGoogle Scholar
  29. 29.
    Thibaut D, Debussche L, Blanche F. Biosynthesis of vitamin B12: structure of precorrin-6x octamethyl ester. Proc Natl Acad Sci USA 1990; 87(22):8800–8804.CrossRefPubMedGoogle Scholar
  30. 30.
    Weaver GW et al. Biosynthesis of vitamin-B12—the site of reduction of precorrin-6X. J Chem Soc Chem Commun 1991; 976–979.Google Scholar
  31. 31.
    Kiuchi F, Thibaut D, Debussche L et al. Biosynthesis of vitamin-B12—stereochemistry of transfer of a hydride equivalent from NADPH by precorrin-6X reductase. J Chem Soc Chem Commun 1992; 306–308.Google Scholar
  32. 32.
    Blanche F, Famechon A, Thibaut D et al. Biosynthesis of vitamin B12 in Pseudomonas denitrificans: the biosynthetic sequence from precorrin-6y to precorrin-8x is catalyzed by the cobL gene product. J Bacteriol 1992; 174(3): 1050–1052.PubMedGoogle Scholar
  33. 33.
    Keller JP, Smith PM, Benach J et al. The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure (Camb) 2002; 10(11): 1475–1487.CrossRefGoogle Scholar
  34. 34.
    Thibaut D, Couder M, Famechon A et al. The final step in the biosynthesis of hydrogenobyrinic acid is catalyzed by the cobH gene product with precorrin-8x as the substrate. J Bacteriol 1992; 174(3):1043–1049.PubMedGoogle Scholar
  35. 35.
    Thibaut D, Kiuchi F, Debussche L et al. Biosynthesis of vitamin-B12—structural studies on precorrin-8X, an octamethylated intermediate and the structure of its stable tautomer. J Chem Soc Chem Commun 1992; 982–985.Google Scholar
  36. 36.
    Shipman LW, Li D, Roessner CA et al. Crystal Structure of Precorrin-8x Methyl Mutase. Structure with Folding & Design 2001; 9(7):587–596.Google Scholar
  37. 37.
    Debussche L, Thibaut D, Cameron B et al. Purification and characterization of cobyrinic acid a,c-diamide synthase from Pseudomonas denitrificans. J Bacteriol 1990; 172(11):6239–6244.PubMedGoogle Scholar
  38. 38.
    Cameron B, Blanche F, Rouyez MC et al. Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans cob genes encoding nicotinate-nucleotide: dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5′-phosphate) synthase. J Bacteriol 1991; 173(19):6066–6073.PubMedGoogle Scholar
  39. 39.
    Crouzet J, Levyschil S, Cameron B et al. Nucleotide sequence and genetic analysis of a 13.1-kilobase-pair Pseudomonas denitrificans DNA fragment containing five cob genes and identification of structural genes encoding Cob(I)alamin adenosyltransferase, cobyric acid synthase, and bifunctional cobinamide kinase-cobinamide phosphate guanylyltransferase. J Bacteriol 1991; 173(19):6074–6087.PubMedGoogle Scholar
  40. 40.
    Debussche L, Couder M, Thibaut D et al. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 1992; 174(22):7445–7451.PubMedGoogle Scholar
  41. 41.
    Fodje MN, Hansson A, Hansson M et al. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 2001; 311(1):111–122.CrossRefPubMedGoogle Scholar
  42. 42.
    Leech HK, Raux E, McLean KJ et al. Characterization of the cobaltochelatase CbiXL: evidence for a 4Fe-4S center housed within an MXCXXC motif. J Biol Chem 2003; 278(43):41900–41907.CrossRefPubMedGoogle Scholar
  43. 43.
    Blanche F, Maton L, Debussche L et al. Purification and characterization of Cob(II)yrinic acid a,c-diamide reductase from Pseudomonas denitrificans. J Bacteriol 1992; 174(22):7452–7454.PubMedGoogle Scholar
  44. 44.
    Debussche L, Couder M, Thibaut D et al. Purification and partial characterization of Cob(I)alamin adenosyltransferase from Pseudomonas denitrificans. J Bacteriol 1991; 173(19):6300–6302.PubMedGoogle Scholar
  45. 45.
    Blanche F, Couder M, Debussche L et al. Biosynthesis of vitamin B12: stepwise amidation of carboxyl groups b, d, e, and g of cobyrinic acid a,c-diamide is catalyzed by one enzyme in Pseudomonas denitrificans. J Bacteriol 1991; 173(19):6046–6051.PubMedGoogle Scholar
  46. 46.
    Crouzet J, Cauchois L, Blanche F et al. Nucleotide sequence of a Pseudomonas denitrificans 5.4-kilobase DNA fragment containing five cob genes and identification of structural genes encoding S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase and cobyrinic acid a,c-diamide synthase. J Bacteriol 1990; 172(10):5968–5979.PubMedGoogle Scholar
  47. 47.
    Roessner CA, Huang KX, Warren MJ et al. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 2002; 148(Pt 6):1845–1853.PubMedGoogle Scholar
  48. 48.
    Raux E, Schubert HL, Roper JM et al. Vitamin B12; insights into biosynthesis’s Mount improbable. (Review) Bioorganic Chem 1999; 27:100–118.CrossRefGoogle Scholar
  49. 49.
    Raux E, Leech HK, Beck R et al. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 2003; 370(Pt 2):505–516.CrossRefPubMedGoogle Scholar
  50. 50.
    Brindley AA, Raux E, Leech HK et al A story of chelatase evolution: identification and characterization of a small 13–15-kDa “ancestral” cobaltochelatase (CbiXS) in the archaea. J Biol Chem 2003; 278(25):22388–22395.CrossRefPubMedGoogle Scholar
  51. 51.
    Raux E, Thermes C, Heathcote P et al. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol 1997; 179(10):3202–3212.PubMedGoogle Scholar
  52. 52.
    Schubert HL, Raux E, Wilson KS et al. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. Biochemistry 1999; 38(33): 10660–10669.CrossRefPubMedGoogle Scholar
  53. 53.
    Al-Karadaghi S, Hansson M, Nikonov S et al. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure 1997; 5(11):1501–1510.CrossRefPubMedGoogle Scholar
  54. 54.
    Blackwood ME, Rush TS, Romesberg F et al. Alternative modes of substrate distortion in enzyme and antibody catalyzed ferrochelation reactions. Biochemistry 1998; 37(3):779–782.CrossRefPubMedGoogle Scholar
  55. 55.
    Lecerof D, Fodje M, Hansson A et al. Structural and mechanistic basis of porphyrin metallation by ferrochelatase. J Mol Biol 2000; 297(1):221–232.CrossRefPubMedGoogle Scholar
  56. 56.
    Roessner CA, Warren MJ, Santander PJ et al. Expression of 9 Salmonella typhimurium enzymes for cobinamide synthesis. Identification of the 11-methyl and 20-methyl transferases of corrin biosynthesis. FEBS Lett 1992; 301(1):73–78.CrossRefPubMedGoogle Scholar
  57. 57.
    Spencer P, Stolowich NJ, Sumner LW et al. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium. Biochemistry 1998; 37(42):14917–14927.CrossRefPubMedGoogle Scholar
  58. 58.
    Frank S, Deery E, Brindley AA et al. Elucidation of substrate specificity in the cobalamin (vitamin B12) biosynthetic methyltransferases; structure and function of the C20 methyltransferase (CbiL) from Methanothermobacter thermautotrophicus. J Biol Chem 2007; 282(33):23957–23969CrossRefPubMedGoogle Scholar
  59. 59.
    Wang J, Stolowich NJ, Santander PJ et al. Biosynthesis of vitamin B12: concerning the identity of the two-carbon fragment eliminated during anaerobic formation of cobyrinic acid. Proc Natl Acad Sci USA 1996; 93(25): 14320–14322.CrossRefPubMedGoogle Scholar
  60. 60.
    Scott AI, Stolowich NJ, Wang J et al. Biosynthesis of vitamin B12: Factor IV, a new intermediate in the anaerobic pathway. Proc Natl Acad Sci USA 1996; 93:14316–14319.CrossRefPubMedGoogle Scholar
  61. 61.
    Santander PJ, Roessner CA, Stolowich NJ et al. How corrinoids are synthesized without oxygen: nature’s first pathway to vitamin B12. Chem Biol 1997; 4(9):659–666.CrossRefPubMedGoogle Scholar
  62. 62.
    Santander PJ, Stolowich NJ, Scott AI. Chemoenzymatic synthesis of an unnatural tetramethyl cobalt corphinoid. Bioorg Med Chem 1999; 7(5):789–794.CrossRefPubMedGoogle Scholar
  63. 63.
    Roessner CA, Scott AI. Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). J Bacteriol 2006; 188(21):7331–7334.CrossRefPubMedGoogle Scholar
  64. 64.
    Kajiwara Y, Santander PJ, Roessner CA et al. Genetically engineered synthesis and structural characterization of cobalt-precorrin 5A and-5B, two new intermediates on the anaerobic pathway to vitamin B12: definition of the roles of the CbiF and CbiG enzymes. J Am Chem Soc 2006; 128(30):9971–9978.CrossRefPubMedGoogle Scholar
  65. 65.
    Scott AI Discovering nature’s diverse pathways to vitamin B12: A 35-year odyssey. J Org Chem 2003; 68(7): 2529–2539.CrossRefPubMedGoogle Scholar
  66. 66.
    Roessner CA, Williams HJ, Scott AI. Genetically engineered production of 1-desmethylcobyrinic acid, 1-desmethylcobyrinic acid a,c-diamide, and cobyrinic acid a,c-diamide in Escherichia coli implies a role for CbiD in C-1 methylation in the anaerobic pathway to cobalamin. J Biol Chem 2005; 280(17): 16748–16753.CrossRefPubMedGoogle Scholar
  67. 67.
    Raux E, Lanois A, Rambach A et al. Cobalamin (vitamin B12) biosynthesis: functional characterization of the Bacillus megaterium cbi genes required to convert uroporphyrinogen III into cobyrinic acid a,c-diamide. Biochem J 1998; 335(Pt 1):167–173.PubMedGoogle Scholar
  68. 68.
    Raux E, Lanois A, Warren MJ et al. Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J 1998; 335(Pt 1): 159–166.PubMedGoogle Scholar
  69. 69.
    Santander PJ, Kajiwara Y, Williams HJ et al. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg Med Chem 2006; 14(3):724–731.CrossRefPubMedGoogle Scholar
  70. 70.
    Fresquet V, Williams L, Raushel FM. Mechanism of cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium LT2. Biochemistry 2004; 43(33):10619–10627.CrossRefPubMedGoogle Scholar
  71. 71.
    Raux E, Lanois A, Levillayer F et al. Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J Bacteriol 1996; 178(3): 753–767.PubMedGoogle Scholar
  72. 72.
    Williams L, Fresquet V, Santander PJ et al. The Multiple Amidation Reactions Catalyzed by Cobyric Acid Synthetase from Salmonella typhimurium Are Sequential and Dissociative. J Am Chem Soc 2007; 129(2):294–295.CrossRefPubMedGoogle Scholar
  73. 73.
    Blanche F, Thibaut D, Debussche L et al. Parallels and decisive differences in vitamin B12 biosyntheses. Angew Chem Int Ed Engl 1993; 32(11):1651–1653.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Ross M. Graham
    • 1
  • Evelyne Deery
    • 2
  • Martin J. Warren
    • 2
  1. 1.School of Medicine and PharmacologyUniversity of Western Australia Fremantle HospitalFremantleAustralia
  2. 2.Protein Science Group, Department of BioscienceUniversity of KentCanterburyUK

Personalised recommendations