Skip to main content

Chlorophyll Breakdown

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Chlorophyll metabolism is probably the most visible manifestation of life. In spite of its obvious ecological importance, chlorophyll catabolism has remained an enigma until about twelve years ago. Contrary to all expectations, chlorophyll breakdown in vascular plants rapidly leads to colorless degradation products. It only fleetingly involves colored intermediates, which result from an oxidative opening of the chlorophyll macrocycle. This stage is rapidly followed by a reduction to shortly existent fluorescent catabolites, which isomerize rapidly to colorless and nonfluorescent tetrapyrrolic catabolites. These latter colorless bilanones accumulate in the vacuoles of the degreened plant material and may represent the final products of controlled chlorophyll break-down in higher plants. This chapter delineates important structural features of chlorophyll catabolites from natural sources and some of the biochemistry of chlorophyll breakdown in higher plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown SB, Houghton JD, Hendry GAF. Chlorophyll breakdown. In: Scheer H, ed. Chlorophylls. Boca Raton: CRC-Press USA, 1991:465–489.

    Google Scholar 

  2. Kräutler B, Jaun B, Bortlik K et al. On the enigma of chlorophyll degradation: The constitution of a secoporphinoid catabolite. Angew Chem Int Ed Engl 1991; 30:1315–1318.

    Article  Google Scholar 

  3. Matile P, Hörtensteiner S, Thomas H et al. Chlorophyll breakdown in senescent leaves. Plant Physiol 1996; 112:1403–1409.

    PubMed  CAS  Google Scholar 

  4. Kräutler B, Matile P. Solving the riddle of chlorophyll breakdown. Acc Chem Res 1999; 32:35–43.

    Article  Google Scholar 

  5. Hörtensteiner S, Kräutler B. Chlorophyll breakdown in oilseed rape. Photosynth Res 2000; 64:137–146.

    Article  PubMed  Google Scholar 

  6. Kräutler B. Unravelling chlorophyll catabolism in higher plants. Biochem Soc Trans 2002; 30:625–630.

    Article  PubMed  Google Scholar 

  7. Scheer H, ed. Chlorophylls. Boca Raton: CRC-Press, 1991.

    Google Scholar 

  8. Matile P, Ginsburg S, Schellenberg M et al. Catabolites of chlorophyll in senescent leaves. J Plant Physiol 1987; 129:219–228.

    CAS  Google Scholar 

  9. Thomas H, Bortlik K, Rentsch D et al. Catabolism of chlorophyll in vivo: Significance of polar chlorophyll catabolites in a nonyellowing senescence mutant of Festuca pratensis Huds. New Phytol 1989; 111:3–8.

    Article  CAS  Google Scholar 

  10. Bortlik K, Peisker C, Matile P. A novel type of chlorophyll catabolite in senescent barley leaves. J Plant Physiol 1990; 136:161–165.

    CAS  Google Scholar 

  11. Matile P, Ginsburg S, Schellenberg M et al. Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells. Proc Natl Acad Sci USA 1988; 85:9529–9532.

    Article  PubMed  CAS  Google Scholar 

  12. Peisker C, Thomas H, Keller F et al. Radiolabelling of chlorophyll for studies on catabolism. J Plant Physiol 1990; 136:544–549.

    CAS  Google Scholar 

  13. Matile P. The vacuole and cell senescence. Adv Bot Res 1997; 25:87–112.

    Article  CAS  Google Scholar 

  14. Kräutler B, Jaun B, Amrein W et al. Breakdown of chlorophyll: Constitution of a secoporphinoid chlorophyll catabolite isolated from senescent barley leaves. Plant Physiol Biochem 1992; 30:333–346.

    Google Scholar 

  15. Willstätter R, Stoll A. Investigations on Chlorophyll. Lancaster: Science Printing Press, 1928.

    Google Scholar 

  16. Rüdiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry 1997; 46:1151–1167.

    Google Scholar 

  17. Thomas H, Hilditch P. Metabolism of thylakoid membrane proteins during foliar senescence. In: Thomas WW, Nothnagel EA, Huftakter RC, eds. Plant Senescence: Its Biochemistry and Physiology. Rockville: Am Soc Plant Physiologists, 1987:114–122.

    Google Scholar 

  18. Ito H, Tanaka Y, Tsuji H et al. Conversion of chlorophyll b to chlorophyll a by isolated cucumber etioplasts. Arch Biochem Biophys 1993; 306:148–151.

    Article  PubMed  CAS  Google Scholar 

  19. Ito H, Tanaka A. Determination of the activity of chlorophyll b to chlorophyll a conversion during greening of etiolated cucumber cotyledons by using pyrochlorophyllide b. Plant Physiol Biochem 1996; 34:35–40.

    CAS  Google Scholar 

  20. Scheumann V, Ito H, Tanaka A et al. Substrate specifity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare L). Eur J Biochem 1996; 242:163–170.

    Article  PubMed  CAS  Google Scholar 

  21. Scheumann V, Schoch S, Rüdiger W. Chlorophyll b reduction during senescence of barley seedlings. Planta 1999; 209:364–370.

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka A, Ito H, Tanaka R et al. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 1998; 95:12719–12723.

    Article  PubMed  CAS  Google Scholar 

  23. Rüdiger W. The last step of chlorophyll synthesis. In: Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 13. New York: Academic Press, 2003:71–108.

    Google Scholar 

  24. Hörtensteiner S, Vicentini F, Matile P. Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L: Enzymatic cleavage of pheophorbide a in vitro. New Phytol 1995; 129:237–246.

    Article  Google Scholar 

  25. Hörtensteiner S. Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 1999, 56:330–347.

    Article  PubMed  Google Scholar 

  26. Matile P, Hörtensteiner S, Thomas H. Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 1999; 50:67–95.

    Article  PubMed  CAS  Google Scholar 

  27. Shioi Y, Tomita N, Tsuchiya T et al. Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. Plant Physiol Biochem 1996; 34:41–47.

    CAS  Google Scholar 

  28. Langmeier M, Ginsburg S, Matile P. Chlorophyll breakdown in senescent leaves: Demonstration of Mg-dechelatase activity. Physiol Plant 1993; 89:347–353.

    Article  CAS  Google Scholar 

  29. Shioi Y, Tatsumi Y, Shimokawa K. Enzymatic degradation of chlorophyll in Chenopodium album. Plant Cell Physiol 1991; 32:87–93.

    CAS  Google Scholar 

  30. Shioi Y, Watanabe K, Takamiya K. Enzymatic conversion of pheophorbide a to the precursor of pyropheophorbide a in leaves of Chenopodium album. Plant Cell Physiol 1996; 37:1143–1149.

    CAS  Google Scholar 

  31. Mühlecker W, Kräutler B, Ginsburg S et al. Breakdown of chlorophyll: A tetrapyrrolic chlorophyll catabolite from senescent rape leaves. Helv Chim Acta 1993; 76:2976–2980.

    Article  Google Scholar 

  32. Mühlecker W, Kräutler B. Breakdown of chlorophyll: Constitution of nonfluorescing chlorophyll catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 1996; 34:61–75.

    Google Scholar 

  33. Iturraspe J, Moyano N, Frydman B. A new 5-formlybilinone as the major chlorophyll a catabolite in tree senescent leaves. J Org Chem 1995; 60:6664–6665.

    Article  CAS  Google Scholar 

  34. Curty C, Engel N. Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 1996; 42:1531–1536.

    Article  CAS  Google Scholar 

  35. Oberhuber M, Berghold J, Mühlecker W et al. Chlorophyll breakdown—On a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 2001; 84:2615–2627.

    Article  CAS  Google Scholar 

  36. Berghold J, Breuker K, Oberhuber M et al. Chlorophyll breakdown in spinach: On the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 2002, 74:109–119.

    Article  PubMed  CAS  Google Scholar 

  37. Matile P, Schellenberg M, Peisker C. Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 1992; 187:230–235.

    Article  CAS  Google Scholar 

  38. Bachmann A, Fernández-López J, Ginsburg S et al. Stay-green genotypes of Phaseolus vulgaris L: Chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytol 1994; 126:593–600.

    Article  CAS  Google Scholar 

  39. Ginsburg S, Schellenberg M, Matile P. Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiol 1994; 105:545–554.

    PubMed  CAS  Google Scholar 

  40. Mühlecker W, Ongania KH, Kräutler B et al. Tracking down chlorophyll breakdown in plants: Elucidation of the constitution of a “fluorescent” chlorophyll catabolite. Angew Chem Int Ed Engl 1997; 36:401–404.

    Article  Google Scholar 

  41. Ginsburg S, Matile P. Identification of catabolites of chlorophyll-porphyrin in senescent rape cotyledons. Plant Physiol 1993; 102:521–527.

    PubMed  CAS  Google Scholar 

  42. Schellenberg M, Matile P, Thomas H. Breakdown of chlorophyll in chloroplasts of senescent barley leaves depends on ATP. J Plant Physiol 1990; 136:564–568.

    CAS  Google Scholar 

  43. Schellenberg M, Matile P, Thomas H. Production of a presumptive chlorophyll catabolite in vitro: Requirement for reduced ferredoxin. Planta 1993; 191:417–420.

    Article  CAS  Google Scholar 

  44. Engel N, Curty C, Gossauer A. Chlorophyll catabolism in Chlorella protothecoides. Part 8: Facts and artifacts. Plant Physiol Biochem 1996; 34:77–83.

    CAS  Google Scholar 

  45. Gossauer A, Engel N. Chlorophyll catabolism—structures, mechanisms, conversions. J Photochem Photobiol 1996; 32:141–151.

    Article  CAS  Google Scholar 

  46. Kräutler B, Mühlecker W, Anderl M et al. Breakdown of chlorophyll: Partial synthesis of a putative intermediary catabolite. Helv Chim Acta 1997; 80:1355–1362.

    Article  Google Scholar 

  47. Rodoni S, Vicentini F, Schellenberg M et al. Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol 1997; 115:677–682.

    Article  PubMed  CAS  Google Scholar 

  48. Hörtensteiner S, Wüthrich K, Matile P et al. The key step in chlorophyll breakdown in higher plants: Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 1998; 273:15335–15339.

    Article  PubMed  Google Scholar 

  49. Rodoni S, Mühlecker W, Anderl M et al. Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymatic steps. Plant Physiol 1997; 115:669–676.

    Article  PubMed  CAS  Google Scholar 

  50. Wüthrich KL, Bovet L, Hunziker PE et al. Molecular cloning, functional expression and characterization of RCC reductase involved in chlorophyll catabolism. Plant J 2000; 21:189–198.

    Article  PubMed  Google Scholar 

  51. Hörtensteiner S, Rodoni S, Schellenberg M et al. Evolution of chlorophyll degradation: The significance of RCC reductase. Plant Biol 2000; 2:63–67.

    Article  Google Scholar 

  52. Mühlecker W, Kräutler B, Matile P et al. Breakdown of chlorophyll: A fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 2000; 83:278–286.

    Article  Google Scholar 

  53. Oberhuber M, Kräutler B. Breakdown of chlorophyll: Electrochemical bilin reduction provides synthetic access to fluorescent chlorophyll catabolites. Chem Bio Chem 2002; 3:104–107.

    PubMed  CAS  Google Scholar 

  54. Eschenmoser A. Vitamin B12. Experimental work on the question of the origin of its molecular structure. Angew Chem 1988; 27:5–40.

    Article  Google Scholar 

  55. Oberhuber M, Berghold J, Breuker K et al. Breakdown of chlorophyll: A nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 2003; 100:6910–6915.

    Article  PubMed  CAS  Google Scholar 

  56. Matile P. Chloroplast senescence. In: Baker NR, Thomas H, eds. Crop Photosynthesis: Special and Temporal Determinants. Amsterdam: Elsevier Science Publisher, 1992:413–440.

    Google Scholar 

  57. Staehelin AL, Newcomb EH. In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. Rockville: Am Soc Plant Physiologists, 2001:25–27.

    Google Scholar 

  58. Matile P, Düggelin T, Schellenberg M et al. How and why is chlorophyll broken down in senescent leaves. Plant Physiol Biochem 1989; 27:595–604.

    CAS  Google Scholar 

  59. Hinder B, Schellenberg M, Rodoni S et al. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 1996; 271:27233–27236.

    Article  PubMed  CAS  Google Scholar 

  60. Matile P. Senescence in plants and its significance for nitrogen economy. Chimia 1987; 41:376–381.

    CAS  Google Scholar 

  61. Losey FG, Engel N. Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare. J Biol Chem 2001; 276:8643–8647.

    Article  PubMed  CAS  Google Scholar 

  62. Hammond-Kosack K, Jones JDG. Responses to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. Rockville: Am Soc Plant Physiologists, 2001:1102–1156.

    Google Scholar 

  63. Suzuki Y, Shioi Y. Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol 1999; 40:909–915.

    CAS  Google Scholar 

  64. Llewellyn CA, Fauzi R, Mantoura C et al. Products of chlorophyll photodegradation-2. Structural identification. Photochem Photobiol 1990; 52:1043–1047.

    Article  CAS  Google Scholar 

  65. Thomas H. Chlorophyll: A symptom and a regulator of plastid development. New Phytol 1997; 136:163–181.

    Article  CAS  Google Scholar 

  66. Engel N, Jenny TA, Mooser V et al. Chlorophyll catabolism in Chlorella protothecoides—Isolation and structure elucidation of a red bilin derivative. FEBS Lett 1991; 293:131–133.

    Article  PubMed  CAS  Google Scholar 

  67. Nakamura H, Musicki B, Kishi Y. Structure of the light emitter in krill bioluminescence. J Am Chem Soc 1988; 110:2683–2685.

    Article  CAS  Google Scholar 

  68. Nakamura H, Kishi Y, Shimomura O et al. Structure of dinoflagellate Luciferin and its enzymatic and nonenzymatic air-oxidation products. J Am Chem Soc 1989; 110:7607–7611.

    Article  Google Scholar 

  69. Curty C, Engel N, Gossauer A. Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll. FEBS Lett 1995; 364:41–44.

    Article  PubMed  CAS  Google Scholar 

  70. Iturraspe J, Engel N, Gossauer A. Chlorophyll catabolism. Isolation and structure elucidation of chlorophyll b catabolites in Chlorella protothecoides. Phytochem 1994; 35:1387–1390.

    Article  CAS  Google Scholar 

  71. Kräutler B. Chlorophyll breakdown and chlorophyll catabolites. In: Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 13. New York: Academic Press, 2003:183–209.

    Google Scholar 

  72. Frankenberg N, Lagarias JC. Biosynthesis and biological functions of Bilins. In Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 13. New York: Academic Press, 2003:211–235.

    Google Scholar 

  73. Thomas H, Schellenberg M, Vicentini F et al. Gregor Mendel’s green and yellow pea seeds. Bot Acta 1996; 109:3–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kräutler .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kräutler, B. (2009). Chlorophyll Breakdown. In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_17

Download citation

Publish with us

Policies and ethics