Tetrapyrroles pp 274-285 | Cite as

Chlorophyll Breakdown

  • Bernhard Kräutler
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Chlorophyll metabolism is probably the most visible manifestation of life. In spite of its obvious ecological importance, chlorophyll catabolism has remained an enigma until about twelve years ago. Contrary to all expectations, chlorophyll breakdown in vascular plants rapidly leads to colorless degradation products. It only fleetingly involves colored intermediates, which result from an oxidative opening of the chlorophyll macrocycle. This stage is rapidly followed by a reduction to shortly existent fluorescent catabolites, which isomerize rapidly to colorless and nonfluorescent tetrapyrrolic catabolites. These latter colorless bilanones accumulate in the vacuoles of the degreened plant material and may represent the final products of controlled chlorophyll break-down in higher plants. This chapter delineates important structural features of chlorophyll catabolites from natural sources and some of the biochemistry of chlorophyll breakdown in higher plants.


Senescent Leaf Chlorophyll Breakdown Chlorella Protothecoides Chlorophyll Catabolite Linear Tetrapyrrole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown SB, Houghton JD, Hendry GAF. Chlorophyll breakdown. In: Scheer H, ed. Chlorophylls. Boca Raton: CRC-Press USA, 1991:465–489.Google Scholar
  2. 2.
    Kräutler B, Jaun B, Bortlik K et al. On the enigma of chlorophyll degradation: The constitution of a secoporphinoid catabolite. Angew Chem Int Ed Engl 1991; 30:1315–1318.CrossRefGoogle Scholar
  3. 3.
    Matile P, Hörtensteiner S, Thomas H et al. Chlorophyll breakdown in senescent leaves. Plant Physiol 1996; 112:1403–1409.PubMedGoogle Scholar
  4. 4.
    Kräutler B, Matile P. Solving the riddle of chlorophyll breakdown. Acc Chem Res 1999; 32:35–43.CrossRefGoogle Scholar
  5. 5.
    Hörtensteiner S, Kräutler B. Chlorophyll breakdown in oilseed rape. Photosynth Res 2000; 64:137–146.CrossRefPubMedGoogle Scholar
  6. 6.
    Kräutler B. Unravelling chlorophyll catabolism in higher plants. Biochem Soc Trans 2002; 30:625–630.CrossRefPubMedGoogle Scholar
  7. 7.
    Scheer H, ed. Chlorophylls. Boca Raton: CRC-Press, 1991.Google Scholar
  8. 8.
    Matile P, Ginsburg S, Schellenberg M et al. Catabolites of chlorophyll in senescent leaves. J Plant Physiol 1987; 129:219–228.Google Scholar
  9. 9.
    Thomas H, Bortlik K, Rentsch D et al. Catabolism of chlorophyll in vivo: Significance of polar chlorophyll catabolites in a nonyellowing senescence mutant of Festuca pratensis Huds. New Phytol 1989; 111:3–8.CrossRefGoogle Scholar
  10. 10.
    Bortlik K, Peisker C, Matile P. A novel type of chlorophyll catabolite in senescent barley leaves. J Plant Physiol 1990; 136:161–165.Google Scholar
  11. 11.
    Matile P, Ginsburg S, Schellenberg M et al. Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells. Proc Natl Acad Sci USA 1988; 85:9529–9532.CrossRefPubMedGoogle Scholar
  12. 12.
    Peisker C, Thomas H, Keller F et al. Radiolabelling of chlorophyll for studies on catabolism. J Plant Physiol 1990; 136:544–549.Google Scholar
  13. 13.
    Matile P. The vacuole and cell senescence. Adv Bot Res 1997; 25:87–112.CrossRefGoogle Scholar
  14. 14.
    Kräutler B, Jaun B, Amrein W et al. Breakdown of chlorophyll: Constitution of a secoporphinoid chlorophyll catabolite isolated from senescent barley leaves. Plant Physiol Biochem 1992; 30:333–346.Google Scholar
  15. 15.
    Willstätter R, Stoll A. Investigations on Chlorophyll. Lancaster: Science Printing Press, 1928.Google Scholar
  16. 16.
    Rüdiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry 1997; 46:1151–1167.Google Scholar
  17. 17.
    Thomas H, Hilditch P. Metabolism of thylakoid membrane proteins during foliar senescence. In: Thomas WW, Nothnagel EA, Huftakter RC, eds. Plant Senescence: Its Biochemistry and Physiology. Rockville: Am Soc Plant Physiologists, 1987:114–122.Google Scholar
  18. 18.
    Ito H, Tanaka Y, Tsuji H et al. Conversion of chlorophyll b to chlorophyll a by isolated cucumber etioplasts. Arch Biochem Biophys 1993; 306:148–151.CrossRefPubMedGoogle Scholar
  19. 19.
    Ito H, Tanaka A. Determination of the activity of chlorophyll b to chlorophyll a conversion during greening of etiolated cucumber cotyledons by using pyrochlorophyllide b. Plant Physiol Biochem 1996; 34:35–40.Google Scholar
  20. 20.
    Scheumann V, Ito H, Tanaka A et al. Substrate specifity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare L). Eur J Biochem 1996; 242:163–170.CrossRefPubMedGoogle Scholar
  21. 21.
    Scheumann V, Schoch S, Rüdiger W. Chlorophyll b reduction during senescence of barley seedlings. Planta 1999; 209:364–370.CrossRefPubMedGoogle Scholar
  22. 22.
    Tanaka A, Ito H, Tanaka R et al. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 1998; 95:12719–12723.CrossRefPubMedGoogle Scholar
  23. 23.
    Rüdiger W. The last step of chlorophyll synthesis. In: Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 13. New York: Academic Press, 2003:71–108.Google Scholar
  24. 24.
    Hörtensteiner S, Vicentini F, Matile P. Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L: Enzymatic cleavage of pheophorbide a in vitro. New Phytol 1995; 129:237–246.CrossRefGoogle Scholar
  25. 25.
    Hörtensteiner S. Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 1999, 56:330–347.CrossRefPubMedGoogle Scholar
  26. 26.
    Matile P, Hörtensteiner S, Thomas H. Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 1999; 50:67–95.CrossRefPubMedGoogle Scholar
  27. 27.
    Shioi Y, Tomita N, Tsuchiya T et al. Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. Plant Physiol Biochem 1996; 34:41–47.Google Scholar
  28. 28.
    Langmeier M, Ginsburg S, Matile P. Chlorophyll breakdown in senescent leaves: Demonstration of Mg-dechelatase activity. Physiol Plant 1993; 89:347–353.CrossRefGoogle Scholar
  29. 29.
    Shioi Y, Tatsumi Y, Shimokawa K. Enzymatic degradation of chlorophyll in Chenopodium album. Plant Cell Physiol 1991; 32:87–93.Google Scholar
  30. 30.
    Shioi Y, Watanabe K, Takamiya K. Enzymatic conversion of pheophorbide a to the precursor of pyropheophorbide a in leaves of Chenopodium album. Plant Cell Physiol 1996; 37:1143–1149.Google Scholar
  31. 31.
    Mühlecker W, Kräutler B, Ginsburg S et al. Breakdown of chlorophyll: A tetrapyrrolic chlorophyll catabolite from senescent rape leaves. Helv Chim Acta 1993; 76:2976–2980.CrossRefGoogle Scholar
  32. 32.
    Mühlecker W, Kräutler B. Breakdown of chlorophyll: Constitution of nonfluorescing chlorophyll catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 1996; 34:61–75.Google Scholar
  33. 33.
    Iturraspe J, Moyano N, Frydman B. A new 5-formlybilinone as the major chlorophyll a catabolite in tree senescent leaves. J Org Chem 1995; 60:6664–6665.CrossRefGoogle Scholar
  34. 34.
    Curty C, Engel N. Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 1996; 42:1531–1536.CrossRefGoogle Scholar
  35. 35.
    Oberhuber M, Berghold J, Mühlecker W et al. Chlorophyll breakdown—On a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 2001; 84:2615–2627.CrossRefGoogle Scholar
  36. 36.
    Berghold J, Breuker K, Oberhuber M et al. Chlorophyll breakdown in spinach: On the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 2002, 74:109–119.CrossRefPubMedGoogle Scholar
  37. 37.
    Matile P, Schellenberg M, Peisker C. Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 1992; 187:230–235.CrossRefGoogle Scholar
  38. 38.
    Bachmann A, Fernández-López J, Ginsburg S et al. Stay-green genotypes of Phaseolus vulgaris L: Chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytol 1994; 126:593–600.CrossRefGoogle Scholar
  39. 39.
    Ginsburg S, Schellenberg M, Matile P. Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiol 1994; 105:545–554.PubMedGoogle Scholar
  40. 40.
    Mühlecker W, Ongania KH, Kräutler B et al. Tracking down chlorophyll breakdown in plants: Elucidation of the constitution of a “fluorescent” chlorophyll catabolite. Angew Chem Int Ed Engl 1997; 36:401–404.CrossRefGoogle Scholar
  41. 41.
    Ginsburg S, Matile P. Identification of catabolites of chlorophyll-porphyrin in senescent rape cotyledons. Plant Physiol 1993; 102:521–527.PubMedGoogle Scholar
  42. 42.
    Schellenberg M, Matile P, Thomas H. Breakdown of chlorophyll in chloroplasts of senescent barley leaves depends on ATP. J Plant Physiol 1990; 136:564–568.Google Scholar
  43. 43.
    Schellenberg M, Matile P, Thomas H. Production of a presumptive chlorophyll catabolite in vitro: Requirement for reduced ferredoxin. Planta 1993; 191:417–420.CrossRefGoogle Scholar
  44. 44.
    Engel N, Curty C, Gossauer A. Chlorophyll catabolism in Chlorella protothecoides. Part 8: Facts and artifacts. Plant Physiol Biochem 1996; 34:77–83.Google Scholar
  45. 45.
    Gossauer A, Engel N. Chlorophyll catabolism—structures, mechanisms, conversions. J Photochem Photobiol 1996; 32:141–151.CrossRefGoogle Scholar
  46. 46.
    Kräutler B, Mühlecker W, Anderl M et al. Breakdown of chlorophyll: Partial synthesis of a putative intermediary catabolite. Helv Chim Acta 1997; 80:1355–1362.CrossRefGoogle Scholar
  47. 47.
    Rodoni S, Vicentini F, Schellenberg M et al. Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol 1997; 115:677–682.CrossRefPubMedGoogle Scholar
  48. 48.
    Hörtensteiner S, Wüthrich K, Matile P et al. The key step in chlorophyll breakdown in higher plants: Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 1998; 273:15335–15339.CrossRefPubMedGoogle Scholar
  49. 49.
    Rodoni S, Mühlecker W, Anderl M et al. Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymatic steps. Plant Physiol 1997; 115:669–676.CrossRefPubMedGoogle Scholar
  50. 50.
    Wüthrich KL, Bovet L, Hunziker PE et al. Molecular cloning, functional expression and characterization of RCC reductase involved in chlorophyll catabolism. Plant J 2000; 21:189–198.CrossRefPubMedGoogle Scholar
  51. 51.
    Hörtensteiner S, Rodoni S, Schellenberg M et al. Evolution of chlorophyll degradation: The significance of RCC reductase. Plant Biol 2000; 2:63–67.CrossRefGoogle Scholar
  52. 52.
    Mühlecker W, Kräutler B, Matile P et al. Breakdown of chlorophyll: A fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 2000; 83:278–286.CrossRefGoogle Scholar
  53. 53.
    Oberhuber M, Kräutler B. Breakdown of chlorophyll: Electrochemical bilin reduction provides synthetic access to fluorescent chlorophyll catabolites. Chem Bio Chem 2002; 3:104–107.PubMedGoogle Scholar
  54. 54.
    Eschenmoser A. Vitamin B12. Experimental work on the question of the origin of its molecular structure. Angew Chem 1988; 27:5–40.CrossRefGoogle Scholar
  55. 55.
    Oberhuber M, Berghold J, Breuker K et al. Breakdown of chlorophyll: A nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 2003; 100:6910–6915.CrossRefPubMedGoogle Scholar
  56. 56.
    Matile P. Chloroplast senescence. In: Baker NR, Thomas H, eds. Crop Photosynthesis: Special and Temporal Determinants. Amsterdam: Elsevier Science Publisher, 1992:413–440.Google Scholar
  57. 57.
    Staehelin AL, Newcomb EH. In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. Rockville: Am Soc Plant Physiologists, 2001:25–27.Google Scholar
  58. 58.
    Matile P, Düggelin T, Schellenberg M et al. How and why is chlorophyll broken down in senescent leaves. Plant Physiol Biochem 1989; 27:595–604.Google Scholar
  59. 59.
    Hinder B, Schellenberg M, Rodoni S et al. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 1996; 271:27233–27236.CrossRefPubMedGoogle Scholar
  60. 60.
    Matile P. Senescence in plants and its significance for nitrogen economy. Chimia 1987; 41:376–381.Google Scholar
  61. 61.
    Losey FG, Engel N. Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare. J Biol Chem 2001; 276:8643–8647.CrossRefPubMedGoogle Scholar
  62. 62.
    Hammond-Kosack K, Jones JDG. Responses to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. Rockville: Am Soc Plant Physiologists, 2001:1102–1156.Google Scholar
  63. 63.
    Suzuki Y, Shioi Y. Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol 1999; 40:909–915.Google Scholar
  64. 64.
    Llewellyn CA, Fauzi R, Mantoura C et al. Products of chlorophyll photodegradation-2. Structural identification. Photochem Photobiol 1990; 52:1043–1047.CrossRefGoogle Scholar
  65. 65.
    Thomas H. Chlorophyll: A symptom and a regulator of plastid development. New Phytol 1997; 136:163–181.CrossRefGoogle Scholar
  66. 66.
    Engel N, Jenny TA, Mooser V et al. Chlorophyll catabolism in Chlorella protothecoides—Isolation and structure elucidation of a red bilin derivative. FEBS Lett 1991; 293:131–133.CrossRefPubMedGoogle Scholar
  67. 67.
    Nakamura H, Musicki B, Kishi Y. Structure of the light emitter in krill bioluminescence. J Am Chem Soc 1988; 110:2683–2685.CrossRefGoogle Scholar
  68. 68.
    Nakamura H, Kishi Y, Shimomura O et al. Structure of dinoflagellate Luciferin and its enzymatic and nonenzymatic air-oxidation products. J Am Chem Soc 1989; 110:7607–7611.CrossRefGoogle Scholar
  69. 69.
    Curty C, Engel N, Gossauer A. Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll. FEBS Lett 1995; 364:41–44.CrossRefPubMedGoogle Scholar
  70. 70.
    Iturraspe J, Engel N, Gossauer A. Chlorophyll catabolism. Isolation and structure elucidation of chlorophyll b catabolites in Chlorella protothecoides. Phytochem 1994; 35:1387–1390.CrossRefGoogle Scholar
  71. 71.
    Kräutler B. Chlorophyll breakdown and chlorophyll catabolites. In: Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 13. New York: Academic Press, 2003:183–209.Google Scholar
  72. 72.
    Frankenberg N, Lagarias JC. Biosynthesis and biological functions of Bilins. In Kadish KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. Vol 13. New York: Academic Press, 2003:211–235.Google Scholar
  73. 73.
    Thomas H, Schellenberg M, Vicentini F et al. Gregor Mendel’s green and yellow pea seeds. Bot Acta 1996; 109:3–4.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Institute of Organic ChemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations