Skip to main content

Regulation of the Late Steps of Chlorophyll Biosynthesis

  • Chapter
Tetrapyrroles

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The regulatory network that controls formation of the various components of the photosynthetic machinery becomes evident when late steps of chlorophyll biosynthesis are investigated by deregulation. A major regulatory point is revealed by a dark-to-light shift revealing the interplay between the light dependent reduction of protochlorophyllide a to chlorophyllide a with phase transitions of plastid membranes and stable accumulation of chlorophyll a-binding proteins. The second part deals with chlorophyll b formation, details of which are controversially disputed in the literature. This is connected with the formation of nuclear-encoded proteins of light-harvesting complexes; expression of their genes, in turn, responds to plastid signals one of which is a chlorophyll precursor. Finally, a hypothetical role for carotenoids to maintain a well-regulated tetrapyrrole pathway will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Domanskii V, Rüdiger W. On the nature of the two pathways in chlorophyll formation from protochlorophyllide//Photosynthesis Research. Photosynth Res 2001; 68:131–139.

    Article  PubMed  CAS  Google Scholar 

  2. Domanskii V, Rassadina V, Gus-Mayer S et al. Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta 2003; 216:475–483.

    PubMed  CAS  Google Scholar 

  3. Schmid HC, Rassadina V, Oster U et al. Preloading of chlorophyll synthase with tetraprenyl diphosphate is an obligatory step in chlorophyll biosynthesis. Biol Chem 2002; 383:1769–1776.

    Article  PubMed  CAS  Google Scholar 

  4. Oliver RP, Griffiths T. Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol 1982; 70:1019–1025.

    Article  PubMed  CAS  Google Scholar 

  5. Keller Y, Bouvier FD, Harlingue A. Metabolic compartmentation of plastid prenyllipid biosynthesis-Evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 1998; 251:413–417.

    Article  PubMed  CAS  Google Scholar 

  6. Schmid HC, Oster U, Kögel J et al. Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem 2001; 382:903–911.

    Article  PubMed  CAS  Google Scholar 

  7. Benz J, Fischer I, Rüdiger W. Determination of phythyl diphosphate and geranylgeranyldiphosphate in etiolated oat seedlings. Phytochemistry 1983; 22:2801–2804.

    Article  CAS  Google Scholar 

  8. Schoefs B, Bertrand M. The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process. FEBS Lett 2000; 486:243–246.

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka, R, Oster U, Kruse E et al. Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated Chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 1999; 120:695–704.

    Article  PubMed  CAS  Google Scholar 

  10. Benz J, Haser A, Rüdiger W. Changes in the endogenous pools of tetraprenyl diphosphates in etiolated oat seedlings after irradiation. Z Pflanzenphysiol 1983; 111:349–356.

    CAS  Google Scholar 

  11. Benz J, Hampp R, Rüdiger W. Chlorophyll biosynthesis by Mesophyll protoplasts and plastids from etiolated oat (Avena sativa L.) leaves. Planta 1981; 152:54–58.

    Article  CAS  Google Scholar 

  12. Eichacker LA, Soll J, Lauterbach P et al. In vitro synthesis of Chlorophyll a in the dark triggers accumulation of Chlorophyll a apoproteins in barley etioplasts. J Biol Chem 1990; 265:13566–13571

    PubMed  CAS  Google Scholar 

  13. Kim J, Eichacker LA, Rüdiger W et al. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and Dl by increasing apoprotein stability. Plant Physiol 1994; 104:907–916.

    Article  PubMed  CAS  Google Scholar 

  14. Eichacker LA, Helfrich M, Rüdiger W et al. Stabilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2, and Dl by chlorophyll a or Zn-pheophytin a. J Biol Chem 1996; 271:32174–32179.

    Article  PubMed  CAS  Google Scholar 

  15. Böddi B, Lindsten A, Ryberg M et al. On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol. Plant 1989; 76:135–143.

    Article  Google Scholar 

  16. Böddi B, Lindsten A, Ryberg M et al. Phototransformation of aggregated forms of protochlorophyllide in isolated etioplast inner membranes. Photochem Photobiol 1990; 52:83–87.

    Article  Google Scholar 

  17. Ryberg M, Dehesh K. Localization of NADPH-protochlorophyllide oxidoreductase in dark-grown wheat (Triticum aestivum) by immuno-electron microscopy before and after transformation of the prolamellar bodies. Physiol Plant 1986; 66:616–624.

    Article  CAS  Google Scholar 

  18. Zhong LB, Wiktorsson B, Ryberg M et al. The Shibata shift: Effects of in vitro conditions on the spectral blue shift of chlorophyllide in irradiated isolated prolamellar bodies. J Photochem Photobiol B Biol 1996; 36:263–270.

    Article  CAS  Google Scholar 

  19. Selstam E, Widell Wigge A. Chloroplast lipids and the assembly of membranes. In: Sundqvist C, Ryberg M, eds. Pigment-protein complexes in plastids, synthesis and assembly. San Diego: Academic Press, 1993:241–277.

    Google Scholar 

  20. Lindsten A, Welch CJ, Schoch S et al. Chlorophyll synthetase is latent in well preserved prolamellar bodies of etiolated wheat. Physiol Plant 1990; 80:277–285.

    Article  CAS  Google Scholar 

  21. Reinbothe C, Lebedev N, Reinbothe S. A protochlorophyllide light-harvesting complex involved in detiolation of higher plants. Nature 1999; 397:80–84.

    Article  CAS  Google Scholar 

  22. Reinbothe S, Pollmann S, Reinbothe C. In situ conversion of protochlorophyllide b to protochlorophyllide a in barley. J Biol Chem 2003; 278:800–806.

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka A, Ito H, Tanaka R et al. Chlorophyll a oxygenase (CAO) is involved on chlorophyll b formation from chlorophyll a. Proc. Natl Acad Sci USA 1998; 95:12719–12723.

    Article  PubMed  CAS  Google Scholar 

  24. Espineda CE, Linford AS, Devine D et al. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 1999; 96:10507–10511.

    Article  PubMed  CAS  Google Scholar 

  25. Oster U, Tanaka R, Tanaka A et al. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 2000; 21:305–310.

    Article  PubMed  CAS  Google Scholar 

  26. Rüdiger W. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynth. Res 2002; 74:187–193.

    Article  PubMed  Google Scholar 

  27. Tanaka R, Koshino Y, Sawa S et al. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J 2001; 26:365–373.

    Article  PubMed  CAS  Google Scholar 

  28. Satoh S, Ikeuchi M, Mimuro M et al. Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. J Biol Chem 2001; 276:4293–4297.

    Article  PubMed  CAS  Google Scholar 

  29. Xu H, Vavilin D, Vermaas W. Chlorophyll b can serve as the major pigment in functional photo-system II complexes of cyanobacteria. Proc Natl Acad Sci USA 2001; 98:14168–14173.

    Article  PubMed  CAS  Google Scholar 

  30. Xu H, Vavilin D, Vermaas W. The presence of chlorophyllb in Synechocystis sp. PCC. J Biol Chem 2002; 277:42726–42732.

    Article  PubMed  CAS  Google Scholar 

  31. Rodermel S. Pathways of plastid-to-nucleus signalling. Trends Plant Sci 2001; 6:471–478.

    Article  PubMed  CAS  Google Scholar 

  32. Strand A, Asami T, Alonso J et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 2003; 421:79–83.

    Article  PubMed  CAS  Google Scholar 

  33. Kittsteiner U, Brunner H, Rüdiger W. The greening process in cress seedlings. II. Complexing agents and 5-aminolevulinate inhibit accumulation of cab-mRNA coding for the light-harvesting chlorophyll a/b protein. Physiol Plant 1991; 81:190–196.

    Article  CAS  Google Scholar 

  34. La Rocca N, Rascio N, Oster U et al. Amitrole treatment of etiolated barley seedlings leads to deregulation of tetrapyrrole synthesis and to reduced expression of Lhc and RbcS genes. Planta 2001; 213:101–108.

    Article  PubMed  Google Scholar 

  35. Kropat J, Oster U, Rüdiger W et al. Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 1997; 94:14168–14172.

    Article  PubMed  CAS  Google Scholar 

  36. Kropat J, Oster U, Rüdiger W et al. Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 2000; 24:523–531.

    Article  PubMed  CAS  Google Scholar 

  37. Schroda M, Kropat J, Oster U et al. Possible role for molecular chaperones in assembly and repair of photosystem IL Biochem. Soc Trans 2001; 29:413–418.

    CAS  Google Scholar 

  38. Pöpperl G, Oster U, Rüdiger W. Light-dependent increase in chlorophyll precursors during the day-night cycle in tobacco and barley seedlings. J Plant Physiol 1998; 153:40–45.

    Google Scholar 

  39. Sullivan JA, Gray JC. Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip 1 mutant. Plant Cell 1999; 11:901–910.

    Article  PubMed  CAS  Google Scholar 

  40. Maxwell DP, Laudenbach DE, Huner NPA. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 1995; 109:787–795.

    PubMed  CAS  Google Scholar 

  41. Escoubas JM, Lomas M, La Roche J et al. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 1995; 92:10237–10241.

    Article  PubMed  CAS  Google Scholar 

  42. Streatfield SJ, Weber A, Konsman EA et al. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development and plastid-dependent nuclear gene expression. Plant Cell 1999; 11:1609–1622.

    Article  PubMed  CAS  Google Scholar 

  43. Karpinski S, Reynolds H, Karpinska B et al. Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 1999; 284:654–657.

    Article  PubMed  CAS  Google Scholar 

  44. Hörtensteiner S, Vicentini F, Matile P. Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L: Enzymatic cleavage of phaeophorbide a in vitro. New Phytol 1995; 129:237–246.

    Article  Google Scholar 

  45. Kräutler B, Matile P. Solving the riddle of chlorophyll breakdown. Acc Chem Res 1999; 32:35–43.

    Article  Google Scholar 

  46. Gossauer A, Engel N. New trends in photobiology: Chlorophyll catabolism—structures, mechanisms, conversions. J Photochem Photobiol B 1996; 32:141–151.

    Article  CAS  Google Scholar 

  47. Scheumann V, Klement H, Helfrich M et al. Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 1999; 445:445–448.

    Article  PubMed  CAS  Google Scholar 

  48. Armstrong GA, Apel K, Rüdiger W. Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 2000; 5:40–44.

    Article  PubMed  CAS  Google Scholar 

  49. Reinbothe C, Buhr F, Pollmann S et al. In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 2003; 278:807–815.

    Article  PubMed  CAS  Google Scholar 

  50. Schoch S, Helfrich M, Wiktorsson B et al. Photoreduction of Zinc-protopheophorbide b with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (Triticum aestivum L.). Eur J Biochem 1995; 229:291–298.

    Article  PubMed  CAS  Google Scholar 

  51. Helfrich M, Schoch S, Schäfer W et al. Absolute configuration of protochlorophyllide alpha and substrate specificity of NADPH-protochlorophyllide oxidoreductase. J Am Chem Soc 1996; 118:2606–2611.

    Article  CAS  Google Scholar 

  52. Kolossov VL, Rebeiz CA. Chloroplast biogenesis 88. Protochlorophyllide b occurs in green but not in etiolated plants. J Biol Chem 2003; 278:49675–49678.

    Article  PubMed  CAS  Google Scholar 

  53. Paulsen H, Schmid VHR. Analysis and reconstitution of chlorophyll proteins. In: Witty M, Smith AG, eds. Analytical Methods in Heme, Chlorophyll, and Related Molecules. Natick: Eaton Publishing, 2001:235–254.

    Google Scholar 

  54. Böger P. Mode of action of herbicides affecting carotenogenesis. J Pesticide Sci 1996; 21:473–478.

    Google Scholar 

  55. Rassadina V, Domanskii V, Averina NG et al. Correlation between chlorophyllide esterification, Shibata shift and regeneration of protochlorophyllide650 in flash-irradiated etiolated barley leaves. Physiol Plant 2004; 121:556–567.

    Article  CAS  Google Scholar 

  56. Rocca NL, Rascio N, Oster U et al. Inhibition of lycopene cylase results in accumulation of chlorophyll precursors. Planta 2007; 225:1019–1029.

    Article  PubMed  CAS  Google Scholar 

  57. Moulin M, McCormac AC, Terry MJ et al. Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 2008; 105:15178–15183.

    Article  PubMed  Google Scholar 

  58. Mochizuki N, Tanaka R, Tanaka A et al. The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 2008; 105:15184–15189.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfhart Rüdiger .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rüdiger, W. (2009). Regulation of the Late Steps of Chlorophyll Biosynthesis. In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_16

Download citation

Publish with us

Policies and ethics