Advertisement

Tetrapyrroles pp 235-249 | Cite as

Biosynthesis of Chlorophyll and Barteriochlorophyll

  • Derren J. Heyes
  • C. Neil Hunter
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

The (bacterio)chlorophyll biosynthetic pathway is of profound importance to the biosphere. During the past 20 years, there have been major advances in the under standing of the genes involved in the pathway and, more recently, in the enzymes that they encode. Chlorophyll biosynthesis can be considered to start with protoporphyrin IX, which lies at the branchpoint with haem synthesis. Therefore, this chapter will summarise the steps in the pathway from protoporphyrin IX through to (bacterio)chlorophyll. The discussion focuses on the current understanding of the bacterial, algal, and plant enzymes with particular emphasis on their protein composition and structure, required cofactors, physical and catalytic properties, and protein-protein interactions.

Keywords

Rhodobacter Sphaeroides Chlorophyll Biosynthesis MoFe Protein Prolamellar Body Protochlorophyllide Oxidoreductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rudiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry 1997; 46:1151–1167.Google Scholar
  2. 2.
    Suzuki JY, Bollivar DW, Bauer CE. Genetic analysis of chlorophyll biosynthesis. Ann Rev Gen 1997; 31:61–89.CrossRefGoogle Scholar
  3. 3.
    Naylor GW, Addlesee HA, Gibson LCD et al. The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynth Res 1999; 62:121–139.CrossRefGoogle Scholar
  4. 4.
    Beale SI. Enzymes of chlorophyll biosynthesis. Photosynth Res 1999; 60:43–73.CrossRefGoogle Scholar
  5. 5.
    Walker CJ, Willows RD. Mechanism and regulation of Mg-chelatase. Biochem J 1997; 327:321–333.PubMedGoogle Scholar
  6. 6.
    Bollivar DW, Suzuki JY, Beatty JT et al. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 1994; 237:622–640.CrossRefPubMedGoogle Scholar
  7. 7.
    Gibson LCD, Willows RD, Kannangara CG et al. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitiution of activity by combining the products of the bchH,-I and-D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 1995; 92:1941–1944.CrossRefPubMedGoogle Scholar
  8. 8.
    Jensen PE, Gibson LCD, Henningsen KW et al. Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 1996; 271:16662–16667.CrossRefPubMedGoogle Scholar
  9. 9.
    Papenbrock J, Grafe S, Kruse E et al. Mg-chelatase of tobacco: Identification of a chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by coexpression of recombinant CHL D, CHL H and CHL I. Plant J 1997; 12:981–990.CrossRefPubMedGoogle Scholar
  10. 10.
    Jensen PE, Gibson LCD, Hunter CN. Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis sp. PCC6803. Biochem J 1998; 334:335–344.PubMedGoogle Scholar
  11. 11.
    Reid JD, Siebert CA, Bullough PA et al. The ATPase activity of the ChlI subunit of magnesium chelatase and formation of a heptameric AAA+ ring. Biochemistry 2003; 42:6912–6920.CrossRefPubMedGoogle Scholar
  12. 12.
    Hansson A, Willows RD, Roberts TH et al. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci USA 2002; 99:13944–13949.CrossRefPubMedGoogle Scholar
  13. 13.
    Gibson LCD, Jensen PE, Hunter CN. Magnesium chelatase from Rhodobacter sphaeroides: Initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J 1999; 337:243–251.CrossRefPubMedGoogle Scholar
  14. 14.
    Jensen PE, Gibson LCD, Hunter CN. ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis sp. PCC6803: Evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J 1999; 339:127–134.CrossRefPubMedGoogle Scholar
  15. 15.
    Reid JD, Hunter CN. Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J Biol Chem 2004; 279(26):26893–26899.CrossRefPubMedGoogle Scholar
  16. 16.
    Fodje MN, Hansson A, Hansson M et al. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 2001; 311:111–122.CrossRefPubMedGoogle Scholar
  17. 17.
    Karger GA, Reid JD, Hunter CN. Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 2001; 40:9291–9299.CrossRefPubMedGoogle Scholar
  18. 18.
    Jensen PE, Gibson LCD, Shephard F et al. Introduction of a new branchpoint in tetrapyrrole biosynthesis in Escherichia coli by coexpression of genes encoding the chlorophyll-specific enzymes magnesium chelatase and magnesium protoporphyrin methyltransferase. FEBS Letts 1999; 455:349–354.CrossRefGoogle Scholar
  19. 19.
    Bollivar DW, Jiang ZY, Bauer CE et al. Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine: Mg-protoporphyrin IX methyltransferase. J Bacteriol 1994; 176:5290–5296.PubMedGoogle Scholar
  20. 20.
    Gibson LCD, Hunter CN. The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin methyltransferase. FEBS Letts 1994; 352(2):127–130.CrossRefGoogle Scholar
  21. 21.
    Smith CA, Suzuki JY, Bauer CE. Cloning and characterization of the chlorophyll biosynthesis gene chlM from Synechocystis PCC 6803 by complementation of a bacteriochlorophyll biosynthesis mutant of Rhodobacter capsulatus. Plant Mol Biol 1996; 30:1307–1314.CrossRefPubMedGoogle Scholar
  22. 22.
    Shepherd M, Reid JD, Hunter CN. Purification and kinetic characterisation of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochem J 2003; 371:351–360.CrossRefPubMedGoogle Scholar
  23. 23.
    Walker CJ, Mansfield KE, Smith KM et al. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 1989; 257:599–602.PubMedGoogle Scholar
  24. 24.
    Porra RJ, Schafer W, Gad’on N et al. Origin of the two carbonyl oxygens of bacteriochlorophyll a: Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation. European J Biochem 1996; 239:85–92.CrossRefGoogle Scholar
  25. 25.
    Walker CJ, Castelfranco PA, Whyte BJ. Synthesis of divinyl protochlorophyllide. enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 1991; 276:691–697.PubMedGoogle Scholar
  26. 26.
    Bollivar DW, Beale SI. The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase: Characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol 1996; 112:105–114.PubMedGoogle Scholar
  27. 27.
    Pinta V, Picaud M, Reiss-Husson F et al. Rubrivivax gelatinosus acsF (previously ORF358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 2002; 184:746–753.CrossRefPubMedGoogle Scholar
  28. 28.
    Gough SP, Petersen BO, Duus JO. Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci USA 2000; 97:6908–6913.CrossRefPubMedGoogle Scholar
  29. 29.
    Suzuki JY, Bauer CE. Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus—Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. J Biol Chem 1995; 270:3732–3740.CrossRefPubMedGoogle Scholar
  30. 30.
    Suzuki JY, Bauer CE. A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci USA 1995; 92:3749–3753.CrossRefPubMedGoogle Scholar
  31. 31.
    Lebedev N, Timko MP. Protochlorophyllide photoreduction. Photosynth Res 1998; 58:5–23.CrossRefGoogle Scholar
  32. 32.
    Griffiths WT. Reconstruction of chlorophyllide formation by isolated etioplast membranes. Biochem J 1978; 174:681–692.PubMedGoogle Scholar
  33. 33.
    Reinbothe C, Lebedev N, Reinbothe S. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 1999; 397:80–84.CrossRefGoogle Scholar
  34. 34.
    Wilks HM, Timko MP. A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase. Identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci USA 1995; 92:724–728.CrossRefPubMedGoogle Scholar
  35. 35.
    Townley HE, Sessions RB, Clarke AR et al. Protochlorophyllide oxidoreductase: A homology model examined by site-directed mutagenesis. Proteins 2001; 44:329–335.CrossRefPubMedGoogle Scholar
  36. 36.
    Klement H, Helfrich M, Oster U et al. Pigment-free NADPH:protochlorophyllide oxidoreductase from Avena sativa L. Eur J Biochem 1999; 265:862–874.CrossRefPubMedGoogle Scholar
  37. 37.
    Oliver RP, Griffiths WT. Covalent labeling of the NADPH: Protochlorophyllide oxidoreductase from etioplast membranes with [3H]N-phenylmaleimide. Biochem J 1981; 195:93–101.PubMedGoogle Scholar
  38. 38.
    Begley TP, Young H. Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. J Am Chem Soc 1989; 111:3095–3096.CrossRefGoogle Scholar
  39. 39.
    Heyes DJ, Ruban AV, Wilks HM et al. Enzymology below 200 K: The kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proc Natl Acad Sci USA 2002; 99:11145–11150.CrossRefPubMedGoogle Scholar
  40. 40.
    Heyes DJ, Ruban AV, Hunter CN. Protochlorophyllide oxidoreductase: “Dark” reactions of a light-driven enzyme. Biochemistry 2003; 42:523–528.CrossRefPubMedGoogle Scholar
  41. 41.
    Heyes DJ, Hunter CN. Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase, (in press).Google Scholar
  42. 42.
    Heyes DJ, van Stokkum IHM, Hunter CN et al. Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nature Struct Biol 2003; 10:491–492.CrossRefPubMedGoogle Scholar
  43. 43.
    Fujita Y. Protochlorophyllide reduction: A key step in the greening of plants. Plant Cell Physiol 1996; 37:411–421.PubMedGoogle Scholar
  44. 44.
    Dean DR, Bolin JT, Zheng LM. Nitrogenase metalloclusters—structures, organization, and synthesis. J Bacteriol 1993; 175:6737–6744.PubMedGoogle Scholar
  45. 45.
    Fujita Y, Bauer CE. Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits—In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 2000; 275:23583–23588.CrossRefPubMedGoogle Scholar
  46. 46.
    Pudek MR, Richards WR. A possible alternative pathway of bacteriochlorophyll biosynthesis in a mutant of Rhodopseudomonas sphaeroides. Biochemistry 1975; 14:3132–3137.CrossRefPubMedGoogle Scholar
  47. 47.
    Freer AA, Prince S, Sauer K et al. Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 1996; 4:449–462.CrossRefPubMedGoogle Scholar
  48. 48.
    Oster U, Bauer CE, Rüdiger W. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 1997; 272:9671–9676.CrossRefPubMedGoogle Scholar
  49. 49.
    Addlesee HA, Gibson LCD, Jensen PE et al. Cloning, sequencing and functional assignment of the chlorophyll biosynthesis gene, chlP, of Synechocystis sp. PCC 6803. FEBS Letts 1996; 389:126–130.CrossRefGoogle Scholar
  50. 50.
    Addlesee HA, Hunter CN. Physical mapping and functional assignment of the geranylgeranylbacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides. J Bacteriol 1999; 181:7248–7255.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Life Sciences Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUK
  2. 2.Western BankUniversity of SheffieldSheffieldUK

Personalised recommendations