Skip to main content

An Historical Introduction to Porphyrin and Chlorophyll Synthesis

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Porphyrins are the extroverts of chemistry. Bright purple and fluorescent, they are used biologically in the processes of energy capture and utilization. Porphyrins are the key to life. It has been suggested that abiotic formation of porphyrins, in particular uroporphyrinogen would have provided the first pigments necessary for the eventual synthesis of the chlorophylls. This would have facilitated the emergence of simple photosynthetic organisms in primordial earth through enhanced efficiency of energy capture and utilisation (Fig. 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lecanu LR. Études chimiques sur le sang humain (cited by Berzelius, 1840), 4∘ Paris No. 395. 1837.

    Google Scholar 

  2. Schultz JH. Ein fall von pemphigus leprosus, complicirt durch lepra visceralis. Griefswald: Inaugural Diss, 1874.

    Google Scholar 

  3. Baumstark F. Zwei pathologische Harnfarbstoff. Pflugers Arch ges Physiol 1874; 9:568–584.

    Google Scholar 

  4. Garrod AE. Inborn Errors of Metabolism. 2nd ed. London: Hodder and Stoughton, 1923.

    Google Scholar 

  5. Biosynthesis of tetrapyrroles and of corrinoids. In: Florkin M, Stotz EH, eds. Comprehensive Biochemistry: A History of Biochemistry. Amsterdam: Elsevier, 1979:193–238.

    Google Scholar 

  6. Moore MR, McColl KEL, Goldberg A. The porphyries. Diabet Metab 1979; 5:323–336.

    CAS  Google Scholar 

  7. Hodgson GW, Baker BL. Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions. Nature 1967; 216:29–32.

    PubMed  CAS  Google Scholar 

  8. Mercer-Smith JA, Mauzerall DC. Photochemistry of porphyrins-a model for the origin of photosynthesis. Photochem Photobiol 1984; 39:397–405.

    PubMed  CAS  Google Scholar 

  9. Bonnett R, Czechowski F. Metalloporphyrins in coal-gallium porphyrins in bituminous coal. J Lab Chem Sci 1984; 1:125–132.

    Google Scholar 

  10. Hodgson GW. Cosmochemical evolution of large organic molecules-illustrative laboratory simulations for porphyrins. Ann NY Acad Sci 1972; 194:86–97.

    PubMed  CAS  Google Scholar 

  11. Barnes CR. On the food of green plants. Bot Gaz 1893; 18:403–411.

    Google Scholar 

  12. Gest HO. History of the word photosynthesis and evolution of its definition. Photosynthesis Research 2002; 73:7–10.

    PubMed  CAS  Google Scholar 

  13. Pelletier F, Caventou JB. Ann Chim Phys 1818; 9(2):194; (J Pharm 1818; 3:486).

    Google Scholar 

  14. Rüdiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry 1997; 46:1151–1167.

    Google Scholar 

  15. Fischer H, Orth H. Die chemie des Pyrrols. Leipzig: Adademische Verlagsgesellschaft, 1940.

    Google Scholar 

  16. Woodward RB. The total synthesis of chlorophyll. Pure Appl Chem 1960; 2:383–404.

    Google Scholar 

  17. Beale SI, Gough SP, Granick S. Biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci USA 1975; 72:2719–2723.

    PubMed  CAS  Google Scholar 

  18. Von Wettstein D, Gough S, Kannangara CG. Chlorophyll Biosynthesis. The Plant Cell 1995; 7:1039–1057.

    Google Scholar 

  19. Battersby AR. Biosynthesis of the pigments of life. Proc R Soc Lond B 1985; 225:1–26.

    PubMed  CAS  Google Scholar 

  20. Berzelius JJ. Lehrbuch der Chemie. Arnoldische Buchhandlung. Leipzig: Dresden, 1840:67–69.

    Google Scholar 

  21. Scherer J. Chemische-physiologische Untersuchungen. Ann Chem Phar 1841; 40:1–64.

    Google Scholar 

  22. Mülder GH. Über eisenfreises hämatin. J Prakt Chem 1844; 32:186–197.

    Google Scholar 

  23. Thudichum JLW. Report on researches intended to promote an improved chemical identification of disease. 10th Report of The Medical Officer. London: Privy Council, H.M.S.O., 1867:152–233, (App. 7).

    Google Scholar 

  24. Hoppe-Seyler F. Das hämatin. Tübinger Med Chem Untersuchungen 1871; 4:523–533.

    Google Scholar 

  25. MacMunn CA. Further researches into the colouring-matters of human urine, with an account of their artificial production from bilirubin, and from haematin. Proc Roy Soc Lond Ser B 1880; 31:206–237.

    Google Scholar 

  26. Hoppe-Seyler F. Über das chlorophyll der pflanzen. Hoppe-Seyler’s Z Physiol Chem 1879; 205:193–197.

    Google Scholar 

  27. Church AH. Researches in Turacin an animal pigment containing copper 11. Philos Trans Roy Soc Lond Ser A 1892; 183:511–530.

    Google Scholar 

  28. Soret JL. Récherches sur l’absorption des rayons ultraviolets par diverses substances. Arch Sci Phys Nat 1883; 10:430–485.

    Google Scholar 

  29. Günther H. Die hämatoporphyrie. Deutsch Arch Klin Med 1911; 105:89–146.

    Google Scholar 

  30. Hammarsten O. Tva fall af hamatoporphyrin i urinen. Uppsala Lak For Forh 1891; 26:259–288.

    Google Scholar 

  31. Stokvis BJ. Zur pathogenese der hamatoporphyrinurie. Z Klin Med 1895; 28:1–9.

    Google Scholar 

  32. Salkowski E. Über vorkommen und nachweis des hämatoporphyrins in härn. Hoppe-Seyler’s Z Physiol Chem 1891; 15:286–309.

    Google Scholar 

  33. Garrod A. On the occurrence and detection of haematoporphyrin in the urine. J Physiol 1892; 13:598–620.

    PubMed  CAS  Google Scholar 

  34. Fischer H. Über das urinporphyrin. 1. Mitteilung. Hoppe-Seyler’s Z Physiol Chem 1915; 95:34–60.

    CAS  Google Scholar 

  35. Nencki M, Sieber N. Über das hämatoporphyrin. Arch Exp Pathol Pharmacol 1888; 24:430–446.

    Google Scholar 

  36. Saillet H. De l’urospectrine (ou urohematoporphyrine urinale normlae). Rev Med 1896; 16:542–552.

    Google Scholar 

  37. Fischer H, Zerweck W. Über uroporphyrinogen heptamethylester und eine neue uberfuhrung von uro-koproporphyrin. Hoppe-Seyler’s Z Physiol Chem 1924; 137:242–264.

    CAS  Google Scholar 

  38. Laidlaw PP. Some observations on blood pigments. J Physiol 1904; 31:464–472.

    PubMed  CAS  Google Scholar 

  39. Küster W. Beitrage zur Kenntnis des Bilirubins und Hämins. Hoppe Seyler’s Z Physiol Chem 1912; 82:463–483.

    Google Scholar 

  40. Willstätter R, Mieg W. Untersuchungen über das chlorophyll. Liebigs Ann Chem 1906; 350:1–47.

    Google Scholar 

  41. Willstätter R, Stoll A. Untersuchungen über chlorophyll. Methoden und ergebnisse. Berlin: Springer, 1913:424.

    Google Scholar 

  42. Fischer H, Hilmer H, Lindner F et al. Chemische befunde bei einem fall von porphyrie (Petry). Hoppe-Seyler’s Z Physiol Chem 1925; 150:44–101.

    CAS  Google Scholar 

  43. Borst M, Königsdörffer H. Untersuchungen uber porphyrie mit besonderer berucksichtigung der Porphyrie Congenita. Leipzig: Hirzel, 1929.

    Google Scholar 

  44. Schumm O. Über die naturlichen porphyrine. Z Physiol Chem 1924; 126:169–202.

    Google Scholar 

  45. Fischer H, Orth H. Chemie des Pyrrols. Leipzig: Acad Verlag, 1937.

    Google Scholar 

  46. Sachs P. Ein fall von akuter porphyrie mit hochgradiger muskelatrophied. Klin Wschr 1931; 10:1123–1125.

    Google Scholar 

  47. Waldenström J, Vahlquist BC. Studien uber die entstehung der roten harnpigmente (uroporphyrin und porphobilin) bein der akuten porphyrie aus ihrer farblosen Vorstufe (porphobilinogen). Hoppe-Seyler’s Z Physiol Chem 1939; 260:189–209.

    Google Scholar 

  48. Shemin D, Russell CS, Abramsky T. The succinate glycine cycle. 1. The mechanism of pyrrole synthesis. J Biol Chem 1955; 215:613.

    PubMed  CAS  Google Scholar 

  49. Muir HM, Neuberger A. The biogenesis of porphyrins. 2. The origin of the methyne carbon atoms. Biochem J 1950; 47:97–104.

    PubMed  CAS  Google Scholar 

  50. Shemin D, Russell CS. Succinate glycine cycle. J Amer Chem Soc 1953; 75:4873–4875.

    CAS  Google Scholar 

  51. Neuberger A, Scott JJ. Aminolaevulinic acid and porphyrin synthesis. Nature 1953; 172:1093–1094.

    PubMed  CAS  Google Scholar 

  52. Falk JE, Dresel EIB, Rimington C. Porphobilinogen as a porphyrin precursor and interconversion of porphyrins in a tissue system. Nature 1953; 172:292.

    PubMed  CAS  Google Scholar 

  53. Westall RG. Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature 1952; 170:614.

    PubMed  CAS  Google Scholar 

  54. Cookson GH, Rimington C. Porphobilinogen. Biochem J 1954; 57:476–484.

    PubMed  CAS  Google Scholar 

  55. Kast A. Über die art der darreichung und Verordnung des sulfonals. Ther Mh 1888; 11:316–319.

    Google Scholar 

  56. Stokvis BJ. Over twee zeldsame kleurstoffen in urine van zicken. Ned Tijds Geneesk 1889; 13:409–417.

    Google Scholar 

  57. Harley V. Two fatal cases of an unusual form of nerve disturbance associated with red urine, probably due to defective tissue oxidation. Brit Med J 1890; 11:1169–1170.

    Google Scholar 

  58. Ranking JE, Pardington GL. Two cases of haematoporphyrin in the urine. Lancet 1890; ii:607–609.

    Google Scholar 

  59. Dobrschansky M. Einiges uber malonal. Wiener Med Presse 1906; 47:2145.

    Google Scholar 

  60. De Matteis F. Disturbances of liver metabolism caused by drugs. Pharm Rev 1967; 19:523–550.

    PubMed  Google Scholar 

  61. Schmid R, Schwartz S. Experimental porphyria: Hepatic type produced by sedormid. Proc Soc Exp Biol Med 1952; 81:685–689.

    PubMed  CAS  Google Scholar 

  62. Goldberg A, Rimington C. Diseases of Porphyrin Metabolism. Springfield: Thomas, 1962:1:11.

    Google Scholar 

  63. Solomon HM, Figge FHJ. Disturbance in porphyrin metabolism caused by feeding diethyl-l,4-dihydro-2,4,6-trimethylpyridine-3,5-dicarboxylate. Proc Soc Exp Biol Med 1959; 100:583–586.

    PubMed  CAS  Google Scholar 

  64. Tephly TR, Coffman BL, Ingall G et al. Identification of N-methylprotoporphrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-l,4-dihydrocollidine-source of the methyl group. Arch Biochem Biophys 1981; 212:120–126.

    PubMed  CAS  Google Scholar 

  65. De Matteis F, Marks GS. The effect of N-methylprotoporphyrin and succinylacetone on the regulation of haem biosynthesis in checken hepatocytes in culture. FEBS Lett 1983; 159:127–131.

    PubMed  Google Scholar 

  66. Cam C. Report on few cases of congenital porphyria. Nester (Instanbul) 1957; 1:2–6.

    Google Scholar 

  67. Elder GH. Acquired disorders of haem synthesis. Essays Med Biochem 1976; 2:75–114.

    CAS  Google Scholar 

  68. Strik JJTWA, Koeman JH. Chemical Porphyria in Man. Amsterdam: Elsevier North-Holland, 1979.

    Google Scholar 

  69. De Matteis F, Rimington C. Disturbance of porphyrin metabolism caused by griseofulvin in mice. Brit J Dermatol 1963; 75:91–104.

    Google Scholar 

  70. Günther H. Die bedeutung der hamatoporphyrinurie in der physiologie und pathologic. Ergebnisse der Allgemienen Pathol Anat 1922; 20:608–764.

    Google Scholar 

  71. McCall-Anderson T. Hydroa aestivale in two brothers, complicated with the presence of hematoporphyrin in the urine. Brit J Dermatol 1898; 10:1–4.

    Google Scholar 

  72. Meyer-Betz F. Untersuchungen über die biologische (photodynamische) Wirkung des hämatoporphyrins und anderen derivate des blut und gallenfarbstoffs. Deutsch Arch Klin Med 1913; 112:476–503.

    Google Scholar 

  73. Hausmann W. Uber die sensibilisierende wirkung tierischer farbstoffe. Anwendung Biochem Z 1908; 14:275–283.

    Google Scholar 

  74. Hausmann W. Die sensibilisierende wirkung des hamatoporphyrins. Biochem Z 1911; 30:276–316

    CAS  Google Scholar 

  75. Waldenström J. Studien uber porphyries. Acta Med Scand Suppl 1937; 82:120.

    Google Scholar 

  76. Watson CJ. The problem of porphyria-some facts and questions. N Engl J Med 1960; 263:1205–1215.

    PubMed  CAS  Google Scholar 

  77. Eales L. Clinical chemistry of the porphyries. In: Dolphin D, ed. The Porphyrias. New York: Academic Press, 1979:665–793.

    Google Scholar 

  78. Yeung-Laiwah AC, Moore MR, Goldberg A. Pathogenesis of acute porphyria. Quart J Med 1987; 63:377–392.

    PubMed  CAS  Google Scholar 

  79. Granick S. Porphyrin synthesis in erythrocytes. 1. Formation of 5-aminolaevulinic acid in erythrocytes. J Biol Chem 1963; 232:1101–1117.

    Google Scholar 

  80. Jackson AH, Games DE, Couch P et al. Conversion of coproporphyrinogen III to protoporphyrin IX. Enzyme 1974; 17:81–87.

    PubMed  CAS  Google Scholar 

  81. Brodie MJ, Moore MR, Goldberg A. Enzyme abnormalities in the porphyrias. Lancet 1977; ii:699–701.

    Google Scholar 

  82. Jordan PM, Burton G, Nordlov H et al. Preuroporphyrinogen-a substrate for uroporphyrinogen III cosynthetase. J Chem Soc Chem Comm 1979; 204–205.

    Google Scholar 

  83. Battersby AR, Fookes CJR, Matcham GWJ et al. Biosynthesis of the pigments of life: Formation of the macrocycle. Nature 1980; 285:17–21.

    PubMed  CAS  Google Scholar 

  84. Waldenström J. Studies on the incidence and heredity of acute porphyria in Sweden. Acta Genet 1956; 6:122–131.

    PubMed  Google Scholar 

  85. Prunty FTG. Acute porphyria-some properties of porphobilinogen. Biochem J 1945; 39:446–451.

    PubMed  CAS  Google Scholar 

  86. Gray CH. Porphyria. Arch Intern Med 1950; 85:459–470.

    Google Scholar 

  87. Haeger G. Urinary 5-aminolaevulinic acid and porphobilinogen in different types of porphyria. Lancet 1958; ii:606–607.

    Google Scholar 

  88. Moore MR, McColl KEL, Rimington C et al. Disorders of Porphyrin Metabolism. New York: Plenum, 1987.

    Google Scholar 

  89. Day RS, Eales L, Meissner D. Coexistent variegate porphyria and porphyria cutanea tarda. N Engl J Med 1982; 307:36–41.

    PubMed  CAS  Google Scholar 

  90. Meissner PN, Sturrock ED, Moore MR et al. Protoporphyrinogen oxidase, porphobilinogen-deaminase and uroporphyrinogen decarboxyiase in variegate porphyria. Biochem Soc Trans 1985; 13:203–204.

    CAS  Google Scholar 

  91. Moore MR, Goldberg A. Health implications of the hemopoietic effects of lead. In: Mahaffey K, ed. Dietary and Environmental Lead: Human Health Effects. Amsterdam: Elsevier, 1985.

    Google Scholar 

  92. Hift RJ, Meissner PN, Todd G et al. Homozygous variegate porphyria: An evolving clinical syndrome. Postgrad Med J 1993; 69:781–786.

    PubMed  CAS  Google Scholar 

  93. Campbell K. A case of haematoporphyrinuria. J Men Sci 1898; 44:305–313.

    Google Scholar 

  94. Erbslöh W. Zur pathologie und pathologischen anatomic der toxischer polyneuritis nach sulfonalgebrauch. Deutsch Z Nervenheik 1903; 23:197–204.

    Google Scholar 

  95. Mason VR, Courville C, Ziskind E. The porphyrins in human disease. Medicine 1933; 12:355–439.

    CAS  Google Scholar 

  96. Copeman SM. Porphyrinuria. Proc Pathol Soc Lond Lancet 1891; i: 197.

    Google Scholar 

  97. Brugsch J. Porphyrine. J Ambrosius Barth, Leipzig1959.

    Google Scholar 

  98. Tishler PV, Woodward B, O’Connor J et al. High prevalence of intermittent acute porphyria in a psychiatric in-patient population. Amer J Psych 1985; 142:1430–1436.

    CAS  Google Scholar 

  99. Irvine DG, Wetterberg L. Kryptopyrrole-like substance in acute intermittent porhyria. Lancet 1972; 2:1201.

    PubMed  CAS  Google Scholar 

  100. Graham DJM, Brodie MJ, McColl KEL et al. Quantitation of 3-ethyl-5-hydroxy-4,5-dimethyl-A3-pyrrolin-2-one in the urine of patients with acute intermittent porphyria. Eur J Clin Invest 1979; 9:40–53.

    Google Scholar 

  101. Graham DJM, Moore MR, Thompson GG et al. The effect of 4-ethyl-5hydroxy-3,5-dimethyl-A3 pyrrolin-2-one on porphyrin synthesis in the rat. Biochem Soc Trans 1976; 4:1089–1091.

    PubMed  CAS  Google Scholar 

  102. Moore MR, Graham DJM. Monopyrroles in porphyria psychosis and lead exposure. Internat J Biochem 1980; 12:827–832.

    CAS  Google Scholar 

  103. Gagey PL. Un cas d’hémoglobinurie en cours d’un xeroderma pigmentosum. Thèse de Paris, 1896.

    Google Scholar 

  104. Vollmer E. Über hereditare syphilis und haematoporphyrinurie. Arch Dematol and Syphilogy (Berlin) 1903; 65:221–234.

    Google Scholar 

  105. Schmid R, Schwartz S, Watson CJ. Porphyrin content of bone marrow and liver in the various forms of porphyria. Arch Intern Med 1954; 93:167–190.

    CAS  Google Scholar 

  106. Waldenström J. The porphyries as inborn errors of metabolism. Amer J Med 1957; 22:758–773.

    PubMed  Google Scholar 

  107. Tio TH. Beschouwingen over de porphyria cutanea tarda. Doctoral Thesis. Amsterdam: 1956.

    Google Scholar 

  108. Moore MR, McColl KEL, Goldberg A. The effects of alcohol on porphyrin biosynthesis and metabolism. In: Rosalki SB, ed. Clinical Biochemistry of Alcoholism. Oxford: Churchill Livingstone: 1984:161–187.

    Google Scholar 

  109. Orten JM, Doehr SA, Bond C et al. Urinary excretion of porphyrins and porphyrin intermediates in human alcoholics. Quart J Studies on Alcohol 1963; 24:598–609.

    CAS  Google Scholar 

  110. Cetingil AI, Ozen MA. Toxic porphyria. Blood 19601; 16:1002–1010.

    Google Scholar 

  111. Pinol-Aguade J, Castells A, Indocochea A et al. A case of biochemically unclassifiable hepatic porphyria. Brit J Dermatol 1969; 81:270–275.

    Google Scholar 

  112. Smith SG. Hepatoerythropoietic porphyria. Sem Dermatol 1986; 5:125–137.

    Google Scholar 

  113. Magnus IA, Jarret A, Prankerd TAJ et al. Erythropoietic protoporphyria: A new porphyria syndrome with solar urticaria due to protoporphyrinaemia. Lancet 1961; ii:448–451.

    Google Scholar 

  114. Langhof H, Müller H, Rietschel I. Untersuchungen zur familiären protoporphyrinamischen lichurticaria. Arch Klin Exp Dermatol 1961; 212:506–518.

    PubMed  CAS  Google Scholar 

  115. Kosenow W, Treibs A. Lichtuberempfindlichtkeit und porphyrinamie. Z Kinderkeikunde 1953; 73:82–92.

    CAS  Google Scholar 

  116. Murphy GM, Hawk JLM, Magnus IA. Late-onset erythropoietic protoporphyria with unusual cutaneous features. Arch Dermatol 1985; 121:1309–1312.

    PubMed  CAS  Google Scholar 

  117. Brouwier L. Quelques observations recueilles dans le service d’inspection de I’abbatoir de Liege: Alteration des os. Echo Vet (Liege) 1884; 271–273.

    Google Scholar 

  118. Tappeiner H. Untersuchung pigmentirter knochen vom schweine. Sitzungserber Ges Morph Physiol München 1885; 1:38–41.

    Google Scholar 

  119. Mosselman D, Hebrant A. Coloration abnormale du squelette chez une bête de boucherie. Ann Med Vet 1898; 47:201–206.

    Google Scholar 

  120. Ingier A. Ochronose bei tieren. Zieglers Beirage zur Pathol Anat 1911; 51:199–208.

    CAS  Google Scholar 

  121. Schmey M. Über ochronose bei mensch und tier. Frankfurter Z Pathol 1913; 12:218–328.

    CAS  Google Scholar 

  122. Möller-Sorenson A. On haemochromatosis ossium (Ochronose) has husdyrene. In: Den KGL, ed. Veterinaer-Og Landbohojskoles Aarsskrift. Copenhagen: 1920:122–139.

    Google Scholar 

  123. Witte H. Ein fall von ochronose bei einem bullen und einem von ihre stammenden kalbe. Z Fleisch U Milchhyg 1914; 24:334.

    Google Scholar 

  124. Rimington C. Some cases of congenital porphyrinuria in cattle-chemical studies upon living animals and postmortem material. Onderstepoort J Vet Sci Animal Ind 1936; 7:567–609.

    CAS  Google Scholar 

  125. Poulson V. Om ochronotiske tilstande hos mennesker og. dyr. (on ochronotic states in man and animals). Med. Diss., University of Copenhagen, 1910.

    Google Scholar 

  126. Clare T, Stephens EH. Congenital porphyria in pigs. Nature (London) 1944; 153:252–253.

    Google Scholar 

  127. Jørgensen SK. Congenital porphyria in pigs. Brit Vet J 1959; 115:160–175.

    Google Scholar 

  128. Jørgensen SK, With TK. Congenital porphyria in animals other than man. In: Rook AJ, Walton GS, eds. Comparative Physiology and Pathology of the Skin. Oxford: Blackwell, 1965:317–331.

    Google Scholar 

  129. Tobias G. Congenital porphyria in a cat. J Amer Vet Med Assoc 1964; 145:462–463.

    CAS  Google Scholar 

  130. Owen LN, Stevenson DE, Keilin J. Abnormal pigmentation and fluorescence in canine teeth. Res Vet Sci 1962; 3:139–146.

    Google Scholar 

  131. Vannotti A. Porphyrins—Their Biological and Chemical Importance. London: Hilger and Watts, 1954.

    Google Scholar 

  132. Lascelles J. Tetrapyrrole Biosynthesis and Its Regulation. New York: Benjamin, 1964.

    Google Scholar 

  133. Rimington C. Porphyrins. Endeavour 1955; 14:126–135.

    CAS  Google Scholar 

  134. Turner WJ. Studies on Porphyria. 1. Observations on the fox squirrel (Sciurus niger). J Biol Chem 1937; 118:519–530.

    CAS  Google Scholar 

  135. Levin EY, Flyger V. Uroporphyrinogen, III. Cosynthetase activity in the fox squirrel (Sciurus niger). Science 1971; 174:59–60.

    PubMed  CAS  Google Scholar 

  136. Kennedy GY. Pigments of marine invertebrates. Adv Mar Biol 1979; 16:309–381.

    CAS  Google Scholar 

  137. Church AH. Researches in turacin, an animal pigment containing copper. Phil Trans R Soc 1869; 159:627–636.

    Google Scholar 

  138. Fischer H, Hilger J. Zur kenntnis der naturlichen porphyrine. 8 mitteilung. Uber das vorkommen von uroporphyrin (als kuppfersalz, Turacin) in den turakusvogeln und den nachweis von koproporphyrin in der hefe. Hoppe-Seyler’s Z Physiol Chem 1924; 138:49–67.

    CAS  Google Scholar 

  139. With TK. Porphyrins in egg shells. Biochem J 1973; 137:597–598.

    Google Scholar 

  140. Derrien E, Turchini J. Sur les fluoresences rouges de certains tissus on secreta animaux en lumiere ultraviolette-nouvelles observations de fluorescences rouges chez les animaux. C R Soc BW (Paris) 1925; 92:1028–1032.

    Google Scholar 

  141. Harder JJ. Glandula nova lacrymalis una cum ducta excretoria in cervis et damis detecta. Acta Eruditorum Lipsiae 1694; 11:49–52.

    Google Scholar 

  142. Brownscheidle CM, Niewenhuis RJ. Ultrastructure of the Harderian gland in male albino rats. Anat Rec 1978; 190:735–754.

    PubMed  CAS  Google Scholar 

  143. Kennedy GY, Jackson AH, Kenner GW et al. Isolation, structure and synthesis of a tricarboxylic porphyrin from the Harderian glads of the rat. FEBS Lett 1970; 6:9–12.

    PubMed  CAS  Google Scholar 

  144. Spike RC, Johnston HS, McGadey J et al. Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the Harderian gland of the female golden hamster. I. The effects of ovariectomy and androgen administration. J Anat 1985; 142:59–72.

    PubMed  CAS  Google Scholar 

  145. Spike RC, Johnston HS, McGadey J et al. Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the Harderian gland of the female golden hamster. II. The time course of changes after ovariectomy. J Anat 1986; 145:67–77.

    PubMed  CAS  Google Scholar 

  146. Payne AP, McGadey J, Moore MR et al. Androgenic control of the Harderian gland in the male golden hamster. J Endocr 1977; 75:73–82.

    PubMed  CAS  Google Scholar 

  147. Mindegaard J. Studier verrend porphyrinsynthese og porfyrinholdige biologiske pigmentinkorns oprindelse og ultrastruktur, Afdelingen for biokemi og erneering. Danmarks Tekniske Hojskole 1976.

    Google Scholar 

  148. Woolley GW, Worley J. Sexual dimorphism in the Harderian gland of the hamster (Cricetus auratus). Anat Rec 1954; 118:416–417.

    Google Scholar 

  149. Thompson GG, Hordovatzi X, Moore MR et al. Sex differences in haem biosynthesis and porphyrin content in the Harderian gland of the golden hamster. Int J Biochem 1984; 16:849–852.

    PubMed  CAS  Google Scholar 

  150. Policard A. Étude sur les aspects offerts par des tumeurs expérimentales examinées a la lumière de Wood. C R Seances Soc Biol 1924; 91:1423–1424.

    Google Scholar 

  151. Körbler J. Untersuchung von krebsgewebe im fluoreszenzerregenden licht. Strahlentherapie 1931; 41:510–518.

    Google Scholar 

  152. Schwartz S, Absolon K, Vermund H. Some relationships of porphyrins, X-rays and tumors. Univ Minnesota Med Bull 1955; 27:7–13.

    Google Scholar 

  153. Rassmussen-Taxdal DS, Ward GE, Figge FHJ. Fluorescence of human lymphatic and cancer tissues following high doses of intravenous hematoporphyrin derivative. Cancer 1955; 8:78–81.

    PubMed  CAS  Google Scholar 

  154. Lipson RL, Baldes EJ, Olsen AM. The use of a derivative of hematoporphyrin in tumor detection. J Nat Cancer Inst 1961; 26:1–11.

    PubMed  CAS  Google Scholar 

  155. Kessel D. Components of hematoporphyrin derivatives and their tumor-localizing capacity. Cancer Res 1982; 42:1703–1706.

    PubMed  CAS  Google Scholar 

  156. Dougherty TJ, Potter WR, Weishaupt KR. An overview of the status of photoradiation therapy. In: Doiron TJ, Gomer CJ, eds. Porphyrin Localisation and Treatment of Tumors. New York: Alan R. lass, 1984.

    Google Scholar 

  157. Kessel D, Cheng ML. Biological and biophysical properties of the tumor-localizing component of hematoporphyrin derivative. Cander Res 1985; 45:3053–3057.

    CAS  Google Scholar 

  158. Scott JJ. The Metabolism of δ-aminolevinlate acid in CIBA Foundation Symposium on Porphyrin Biosynthesis and Metabolism. In: Wolstenholme GEW, Millar ECP, eds. London: J. and A. Churchill Ltd., 1955.

    Google Scholar 

  159. Peng Q, Warloe T, Berg K et al. 5-Aminolevulinic Acid-Based Photodynamic Therapy: Clinical Research and Future Challenges. Cancer 1997; 12(79):2282–2308.

    Google Scholar 

  160. Brown JE, Brown SB, Vernon DI. Photodynamic therapy—New light on cancer treatment. JSDC 1999; 115:249–253.

    CAS  Google Scholar 

  161. MacAlpine I, Hunter R. George the III and the ‘Mad Business.’ London: Penguin, 1969.

    Google Scholar 

  162. Röhl JCG, Warren M, Hunt D. Purple Secret: Genes. ‘Madness’ and the Royal Houses of Europe 1998.

    Google Scholar 

  163. Ware M. Porphyria-A royal malady. London: British Medical Association, 1968.

    Google Scholar 

  164. Cox TM, Jack N, Lofthouse S et al. King George 111 and porphyria: An elecental hypothesis and investigation. Lancet 2005; 366:332–335.

    PubMed  Google Scholar 

  165. Arnold WN. Vincent Van Gogh: Chemicals, Crises, and Creativity. Boston: Birkhäuser, 1992.

    Google Scholar 

  166. Ulis L. On porphyria and the aetiology of werewolves. Proc Roy Soc Med 1964; 57:23–26.

    Google Scholar 

  167. Dresser N. Vampires are in the headlines, but patients pay the price. Cal Folk Soc Modesto Calif 1986.

    Google Scholar 

  168. Gentz J, Johansson S, Lindblad B et al. Excretion of delta-aminolaevulinic acid in hereditary tyrosinaemia. Clin Chim Acta 1969; 23:257–263.

    PubMed  CAS  Google Scholar 

  169. Koskelo P. Studies of urinary coproporphyrin excretion in acute coronary diseases. Ann Med Intern Fenniae 1956.

    Google Scholar 

  170. Koskelo P, Heikkila J. Urinary excretion of porphyrin precursors in myocardial infarction. Acta Med Scand 1965; 178:681.

    PubMed  CAS  Google Scholar 

  171. Yeung-Laiwah AC, Rapeport WG et al. Carbamazepine-induced nonhereditary acute porphyria. Lancet 1983; i:790–792.

    Google Scholar 

  172. Marks GS. The effects of chemicals on hepatic heme biosynthesis. TIPS 1981; 2:59–61.

    CAS  Google Scholar 

  173. Udagawa M, Horie Y, Hirayama C. Aberrant porphyrin metabolism in hepatocellular carcinoma. Biochem Med 1984; 31:131–139.

    PubMed  CAS  Google Scholar 

  174. Tio TH, Leijnse B, Jarrett A et al. Acquired porphyria from a liver tumour. Clin Sci 1957; 16:517–527.

    PubMed  CAS  Google Scholar 

  175. Lithner F, Wetterberg L. Hepatocellular carcinoma in patients with acute intermittent porphyria. Acta Med Scand 1984; 215:272–274.

    Google Scholar 

  176. Koskelo P, Toivonen I, Adlercreutz H. Urinary coproporphyrin isomer distribution in the Dubin-Johnson syndrome. Clin Chem 1967; 13:1006–1008.

    PubMed  CAS  Google Scholar 

  177. Ben Ezzer J, Rimington C, Shani M et al. Abnormal excretion of the isomers of urinary coproporphyrin by patients with Dubin-Johnson syndrome in Israel. Clin Sci 1971; 40:17–30.

    PubMed  CAS  Google Scholar 

  178. Cohen C, Kirsch RE, Moore MR. Porphobilinogen-deaminase and the synthesis of porphyrin isomers in Dubin-Johnson syndrome. S Afr Med J 1986; 70:36–39.

    PubMed  CAS  Google Scholar 

  179. Lannaec RTM. Traite sur l’auscultation mediate. 4th ed. Chaude Paris 1831.

    Google Scholar 

  180. Behrend B. Uber endoglobulare einschlusse volker blutkorperchen. Deutsch Med Wschr 1899; 25:254.

    Google Scholar 

  181. Duesberg R. Über die anämien — 1. Porphyrie und erythropoese. Arch Exp Pathol 1931; 162:249.

    Google Scholar 

  182. Liebig NS. Uber die experimentelle Bleihämatoporphyrie. Arch Exp Pathol Pharmacol 1927; 125:16–27.

    CAS  Google Scholar 

  183. Grotepass W. Zur kenntnis des im harn auftretenden porphyrins bei bleivergiftung. Hoppe-Seyler’s Z Physiol Chem 1932; 205:193–197.

    CAS  Google Scholar 

  184. Van den Bergh HAA, Grotepass W, Revers FE. Beitrag über das porphyrin in Blut und Galle. Klin Wschr 1932; 11:1534–1536.

    Google Scholar 

  185. Gibson KD, Neuberger A, Scott JJ. The purification and properties of delta-aminolaevulinic acid dehydratase. Biochem J 1955; 61:618–629.

    PubMed  CAS  Google Scholar 

  186. Woods JS, Fowler BA. Effects of chronic arsenic exposure on hematopoietic function in adult mammalian liver. Environ Health Perspect 1977; 19:209–213.

    PubMed  CAS  Google Scholar 

  187. Fowler BA, Mahaffey KR. Interactions among lead, cadmium and arsenic in relation to porhyrin excretion patterns. Environ Health Perspect 1978; 25:87–90.

    PubMed  CAS  Google Scholar 

  188. Ng JC, Qi L, Moore MR. Porphyrin profiles in blood and urine as a biomarker for exposure to various arsenic species. Cell Mol Biol (Noisy-le-grand) 2002; 48:111–123.

    CAS  Google Scholar 

  189. Wang JP, Qi L, Zheng B et al. Porphyrins as early biomarkers for arsenic exposure in animals and humans. Cell Mol Biol (Noisy-le-grand) 2002; 48:835–843.

    CAS  Google Scholar 

  190. Hughes GS, Davis L. Variegate porphyria and heavy metal poisoning from ingestion of ‘moonshine’. South Med J 198; 76:1027–1029.

    Google Scholar 

  191. Poh-Fitzpatrick M.B. Porphyria, pseudoporphyria, pseudopseudoporphyria. Arch Dermatol 1986; 122:403–404.

    PubMed  CAS  Google Scholar 

  192. Topi GC, D’Alessandro GL, De Costanza F et al. Porphyria and pseudoporphyria in hemodialized patients. Int J Biochem 1980; 12:963–967.

    PubMed  CAS  Google Scholar 

  193. Kaneko J, Cornelius CE. Clinical Biochemistry of Domestic Animals. 2nd ed. Vol. 1. New York: Academic Press, 1970.

    Google Scholar 

  194. Lim CK, Rideout JM, Peters TJ. Pseudoporphyria associated with consumption of brewer’s yeast. Brit Med J 1984; 298:1640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Moore, M.R. (2009). An Historical Introduction to Porphyrin and Chlorophyll Synthesis. In: Tetrapyrroles. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78518-9_1

Download citation

Publish with us

Policies and ethics