Skip to main content

Constant-temperature refrigeration processes

  • Chapter
  • First Online:
Cryogenic Mixed Refrigerant Processes

Part of the book series: International Cryogenics Monograph Series ((ICMS))

  • 2661 Accesses

Abstract

Mixed refrigerant processes can be broadly classified into two groups: (1) those in which refrigeration is provided over a constant temperature or over a small range of temperatures, typically less than 1–5 K, and (2) those inwhich refrigeration is provided over a large range of temperatures, typically greater than 50 K, for example, in the cooling and liquefaction of gases. The processes belonging to the former category are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Boiarskii, M., Khatri, A., and Podchernieav, O. (2000). Enhanced refrigeration performance of the throttle-cycle coolers operating with mixed refrigerants. Advances in Cryogenic Engineering, 45:291–297.

    Google Scholar 

  2. Boiarskii, M., Mogorychmy, V. L., and Klusmier, L. (1995). Cryogenic mixed gas refrigerant for operation within temperature ranges of 80°K– 100°K. U.S. Patent 5,441,658.

    Google Scholar 

  3. Venkatarathnam,G. (2007). Arefrigerant composition for refrigeration systems. India patent 211, 627.

    Google Scholar 

  4. Boiarskii, M., Podcherniaev, O., and Lunin, A. (2003). Optimal design and generalized performance of throttle cycle coolers operating with mixed refrigerants. In Proc. of the International Congress of Refrigeration, Aug. 17–22, 2003, Washington D.C., paper ICR 0352.

    Google Scholar 

  5. Kumar, P. S. (2004). Studies on Joule-Thomson cryogenic refrigerators operating with refrigerant mixtures. Ph.D. thesis, Indian Institute of Technology, Madras.

    Google Scholar 

  6. Reddy, V. R. (2004). Experimental studies on mixed refrigerant cryocoolers with and without phase separators. Master’s thesis, Indian Institute of Technology Madras.

    Google Scholar 

  7. Radebaugh, R. (2004). Refrigeration for superconductors. Proc. of the IEEE, 92(10):1719–1734.

    Article  Google Scholar 

  8. Garcia, D. C., and Luks, K. D. (1999). Patterns of solid-fluid phase equilibria: New possibilities? Fluid Phase Equilibria, 161:91–106.

    Article  CAS  Google Scholar 

  9. Prausnitz, J., Lichtenthaler, R., and de Azevedo, E. (1985). Molecular Thermodynamics of Fluid-Phase Equilibria, chapter 9. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  10. Walas, S. M. (1985). Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, New York.

    Google Scholar 

  11. Aspentech (2004). Aspen Plus and Aspen Plus Optimizer simulation programs, Ver. 12.1. Aspen Tech Inc., USA.

    Google Scholar 

  12. Aspentech (2007). Aspen Plus and Aspen Plus Optimizer simulation programs, Ver. 20.0. Aspen Tech Inc., USA.

    Google Scholar 

  13. Grezin, A. K., and Zacharov, N. D. (1979). General principles of formation and optimization of multicomponent working fluids for cryogenic systems. In Proc. of the 15th International Congress of Refrigeration, volume 1, pages 169–172.

    Google Scholar 

  14. Alexeev, A. and Quack, H. (2003). Refrigerant mixture for a mixture-throttling process. U.S. Patent 6,513,338.

    Google Scholar 

  15. Dobak, J. D., Radebaugh, R., Huber,M. L., and Marquardt, E. D. (1998). Mixed gas refrigeration method. U.S.Patent 5,787,715.

    Google Scholar 

  16. Dobak, J. D., Radebaugh, R., Huber,M. L., and Marquardt, E. D. (1998). Mixed gas refrigeration method. U.S.Patent 5,787,715.

    Google Scholar 

  17. Gong, M. Q., Luo, E. C., Zhou, Y., Liang, J. T., and Zhang, L. (2000). Optimum composition calculation for multicomponent cryogenic mixture used in Joule-Thomson refrigerators. Advances in Cryogenic Engineering, 45:283–290.

    CAS  Google Scholar 

  18. Little, W. A. (1997). Method for efficient counter-current heat exchange using optimized mixtures. U.S. Patent 5,644,502.

    Google Scholar 

  19. Alexeev, A. and Quack, H. (2000). Vorrichtung und verfahren zur kryolagerung biologischer stoffe. German Patent 19922364.

    Google Scholar 

  20. Fuderer, A. (1965). Compression process for refrigeration. U.S. Patent 3,203,194.

    Google Scholar 

  21. Missimer, D. J. (1972). Self-balancing low temperature refrigeration system. U.S. Patent 3,768,273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadhiraju Venkatarathnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Venkatarathnam, G. (2008). Constant-temperature refrigeration processes. In: Timmerhaus, K., Rizzuto, C. (eds) Cryogenic Mixed Refrigerant Processes. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78514-1_4

Download citation

Publish with us

Policies and ethics