Advertisement

Mock Theta Functions Ranks and Maass Forms

Chapter
Part of the Developments in Mathematics book series (DEVM, volume 17)

Keywords

Modular Form Theta Function Cusp Form Mock Theta Function Maass Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ahlgren, Distribution of the partition function modulo composite integers M, Math. Annalen, 318 (2000), pages 795–803.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Ahlgren and K. Ono, Congruence properties for the partition function, Proc. Natl. Acad. Sci., USA 98, No. 23 (2001), pages 12882–12884.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. E. Andrews, On the theorems of Watson and Dragonette for Ramanujan’s mock theta functions, Amer. J. Math. 88 No. 2 (1966), pages 454–490.CrossRefMathSciNetGoogle Scholar
  4. 4.
    G. E. Andrews, Mock theta functions, Theta functions – Bowdoin 1987, Part 2 (Brunswick, ME., 1987), pages 283–297, Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI., 1989.Google Scholar
  5. 5.
    G. E. Andrews, Partitions: At the interface of q-series and modular forms, Rankin Memorial Issues, Ramanujan J. 7 (2003), pages 385–400.MATHGoogle Scholar
  6. 6.
    G. E. Andrews, Partitions with short sequences and mock theta functions, Proc. Natl. Acad. Sci. USA, 102 No. 13 (2005), pages 4666–4671.CrossRefMathSciNetGoogle Scholar
  7. 7.
    G. E. Andrews, F. Dyson, and D. Hickerson, Partitions and indefinite quadratic forms, Invent. Math. 91 No. 3 (1988), pages 391–407.CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. E. Andrews and F. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 No. 2 (1988), pages 167–171.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. O. L. Atkin and H. P. F. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. 66 No. 4 (1954), pages 84–106.CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. O. L. Atkin, Multiplicative congruence properties and density problems for p(n), Proc. London Math. Soc. 3 18 (1968), pages 563–576.CrossRefMathSciNetGoogle Scholar
  11. 11.
    K. Bringmann and K. Ono, The f(q) mock theta function conjecture and partition ranks, Invent. Math., 165 (2006), pages 243–266.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    K. Bringmann and K. Ono, Dyson’s ranks and Maass forms, Ann. of Math., accepted for publication.Google Scholar
  13. 13.
    J. H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004),pages 45–90.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s lost notebook, Invent. Math. 136 No. 3 (1999), pages 497–569.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Cohen, q-identities for Maass waveforms, Invent. Math. 91 No. 3 (1988),pages 409–422.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    L. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc. 72 No. 3 (1952), pages 474–500.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944),pages 10–15.Google Scholar
  18. 18.
    F. Dyson, A walk through Ramanujan’s garden, Ramanujan revisited (Urbana-Champaign, Ill. 1987), Academic Press, Boston, 1988, pages 7–28.Google Scholar
  19. 19.
    F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990),pages 1–17.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    B. Gordon and R. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. 62 No. 2 (2000), pages 321–335.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    B. Gordon and R. McIntosh, Modular transformations of Ramanujan’s fifth and seventh order mock theta functions, Ramanujan J. 7 (2003), pages 193–222.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    D. Hickerson, On the seventh order mock theta functions, Invent. Math. 94 No. 3 (1988), pages 661–677.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), pages 93–107.MATHMathSciNetGoogle Scholar
  24. 24.
    K. Mahlburg, Partition congruences and the Andrews–Garvan–Dyson crank, Proc. Natl. Acad. Sci., USA, 102 (2005), pages 15373–15376.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    K. Ono, Distribution of the partition function modulo m, Ann. of Math. 151 (2000),pages 293–307.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q-series, Conf. Board of the Math. Sciences, Regional Conference Series, No. 102, Amer. Math. Soc., Providence, 2004.Google Scholar
  27. 27.
    H. Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag New York–Heidelberg, 1973.Google Scholar
  28. 28.
    S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.MATHGoogle Scholar
  29. 29.
    A. Selberg, Über die Mock-Thetafunktionen siebenter Ordnung, Arch. Math. Naturvidenskab, 41 (1938), pages 3–15 (see also Coll. Papers, I, pages 22–37).Google Scholar
  30. 30.
    J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. 22 (1976), pages 227–260.MATHMathSciNetGoogle Scholar
  31. 31.
    G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973),pages 440–481.CrossRefMathSciNetGoogle Scholar
  32. 32.
    S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London Math. Soc., 93 (2006), pages 304–324.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    G. N. Watson, The final problem: An account of the mock theta functions, J. London Math. Soc. 2 (2) (1936), pages 55–80.CrossRefGoogle Scholar
  34. 34.
    G. N. Watson, The mock theta functions (2), Proc. London Math. Soc. (2) 42 (1937), pages 274–304.CrossRefGoogle Scholar
  35. 35.
    S. P. Zwegers, Mock ϑ-functions and real analytic modular forms, q-series with applications to combinatorics, number theory, and physics (ed. B. C. Berndt and K. Ono), Contemp. Math. 291, Amer. Math. Soc., (2001), pages 269–277.Google Scholar
  36. 36.
    S. P. Zwegers, Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002.Google Scholar

Copyright information

© Springer-Verlag New York 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WisconsinMadison

Personalised recommendations