Skip to main content

Exploiting Symmetries Alternating Sign Matrices and the Weyl Character Formulas

  • Chapter
  • First Online:
  • 1395 Accesses

Part of the book series: Developments in Mathematics ((DEVM,volume 17))

Summary

This paper illustrates some of the power and beauty of determinantevaluations, beginning with Cauchy’s proof of the Vandermondedeterminant evaluation, continuing through the Weyldenominator formulas and some open conjectures on alternating-sign{matrices}, and ending with the Izergin–Korepin determinantexpansion for the six-vertex model with domain wall boundaryconditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodney J. Baxter. Eight-vertex model in lattice statistics. Physical Review Letters, 26:832–833, 1971.

    Article  Google Scholar 

  2. Rodney J. Baxter. Exactly Solved Models in StatisticalMechanics. Academic Press, London, 1982.

    Google Scholar 

  3. David M. Bressoud. Proofs and Confirmations: The Story of theAlternating-Sign Matrix Conjecture. Cambridge University Press,Cambridge, UK, 1999.

    Google Scholar 

  4. David M. Bressoud and James Propp. How the alternating-sign matrixconjecture was solved. Notices Amer. Math. Soc.,46:637–646, 1999.

    MathSciNet  Google Scholar 

  5. 5. Augustin-Louis Cauchy. Mémoire sur les fonctions qui nepeuvent obtenir que deux valeurs égales et de signescontraires par suite des transpositions opérées entre lesvariables qu’elles renferment. Journal de l’ÉcolePolytechnique}, 10(17):29–112, 1815. Reprinted in Œ uvrescomplètes d’Augustin Cauchy series 2, Vol. 1, 91–161.Paris: Gauthier-Villars, 1899.

    Google Scholar 

  6. P. Desnanot. Complément de la théorie des équations du premier degr’. Paris, 1819. Quoted in ThomasMuir, The Theory of Determinants in the Historical Order of Development, vol. 1, pp. 136–148. London: MacMillan andCo. 1906.

    Google Scholar 

  7. Anatoli G. Izergin. Partition function of a six-vertex model in afinite volume. Dokl. Akad. Nauk SSSR, 297:331–333, 1987.

    MathSciNet  Google Scholar 

  8. 8. C. G. J. Jacobi. De binis quibuslibet functionibus homogeneissecundi ordinis per {substitutiones} lineares in alias binastransformandis. Journal für die Reine und AngewandteMathematik, 2:247–257, 1833. Reprinted in C. G. J. Jacobi:Gesammelte Werke. Vol. 3, pp. 191–268. Berlin: Georg Reimer,1884.

    Google Scholar 

  9. Vladimir E. Korepin, Nikolai M. Bogoliubov, and Anatoli G.Izergin. Quantum inverse scattering method and correlationfunctions. Cambridge University Press, Cambridge, UK, 1993.

    Google Scholar 

  10. Greg Kuperberg. Another proof of the alternating-sign matrixconjecture. International Mathematics Research Notes,1996:139–150, 1996.

    Google Scholar 

  11. Greg Kuperberg. Symmetry classes of alternating-sign matricesunder one roof. Ann. of Math., 156:835–866, 2002.

    Google Scholar 

  12. W. H. Mills, D. P. Robbins, and H. Rumsey. Alternating-signmatrices and descending plane partitions. Journal ofCombinatorial Theory, 34:340–359, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  13. Soichi Okada. Alternating-sign matrices and some deformations of W eyl’s denominator formulas. Journal of AlgebraicCombinatorics, 2:155–176, 1993.

    MATH  Google Scholar 

  14. Soichi Okada. Enumeration of symmetry classes of alternating-signmatrices and characters of classical groups. Journal ofAlgebraic Combinatorics, 23:43–69, 2006.

    Article  MATH  Google Scholar 

  15. David P. Robbins. The story of 1, 2, 7, 42, 429, 7436, The Mathematical Intelligencer, 13:12–19, 1991.

    Article  MATH  Google Scholar 

  16. David P. Robbins and Howard Rumsey. Determinants andalternating-sign matrices. Advances in Mathematics,62:169–184, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  17. 17. I. J. Schur. Ein beitrag zur additiven Zahlentheorie und zurTheorie der Kettenbrüche. S.-B. Preuss. Akad.Wiss. Phys.-Math. Kl., pages 302–321, 1917. Reprinted in Gesammelte Abhandlungen\/. Vol. 2, pp. 117–136. Berlin:Springer-Verlag, 1973.

    Google Scholar 

  18. Hermann Weyl. The Classical Groups: Their Invariants andRepresentations. Princeton University Press, Princeton, NewJersey, 1939.

    Google Scholar 

  19. Doron Zeilberger. Proof of the alternating-sign matrix conjecture.Electronic Journal of Combinatorics, 3, 1996. R13.

    Google Scholar 

  20. Doron Zeilberger. Proof of the refined alternating-sign matrixconjecture. New York Journal of Mathematics,2:59–68, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Bressoud .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag New York

About this chapter

Cite this chapter

Bressoud, D.M. (2008). Exploiting Symmetries Alternating Sign Matrices and the Weyl Character Formulas. In: Surveys in Number Theory. Developments in Mathematics, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78510-3_3

Download citation

Publish with us

Policies and ethics