Managing Hazardous Pollutants in Chile: Arsenic

  • Ana María Sancha
  • Raul O’Ryan
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 196)

1 Introduction

Chile is one of the few countries confronted with environmental challenges posed by extensive arsenic pollution, which exists in the northern part of the country. Naturally occurring arsenic in Chile derives from volcanic activity in the Andes Mountains and affects water, air, and soils. Additionally, copper mining and smelting activities, major economic activities in Chile, are important anthropogenic sources of arsenic. The high levels of arsenic contamination in the north of Chile, and the economic consequences of mitigating the contamination in water and air, have not allowed copying standards applied in other countries.

In Chile, approximately 1.8 million people, representing about 12% of the total population, live in arsenic-polluted areas (Fig. 1). Until recently, water consumed by the urban population contained levels of arsenic that were much higher than the values recommended by the World Health Organization (WHO). The air near many large cities is also...


Arsenic Concentration Arsenic Exposure Emission Standard Arsenic Content Copper Smelter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank all those who made this study possible. We are grateful to the mining and sanitary companies that participated in the project and provided valuable technical support: in particular, Corporación Nacional del Cobre de Chile (CODELCO), Compañía Minera Disputada de las Condes, Compañia Minera El Indio, Empresa Nacional de Mineria (ENAMI), and REFIMET S.A. We also express our gratitude to the numerous students and technical staff who, with their hard work and enthusiasm, made this study possible. We are especially grateful to the international support of experts from the U.S. Environmental Protection Agency (EPA), Carnegie-Mellon, and World Health Organization (WHO). We acknowledge the financial support of Fund for the Promotion of Scientific and Technological Development (FONDEF). Finally, we thank the University of Chile for its support on this project.


  1. Alam M, Snow T, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308:83–96.CrossRefGoogle Scholar
  2. Ayers RS, Westcot DW (1994) Water quality for agriculture. Irrigation and Drainage Paper 29, rev. 1. Reprinted 1989, 1994. Food and Agriculture Organization of the United Nations, Rome (1985).Google Scholar
  3. Borgoño J, Greiber R (1971) Epidemiologic study of arsenic poisoning in the city of Antofagasta (Estudio Epidemiológico del arsenicismo en la ciudad de Antofagasta). Rev Méd Chil 99:702–707.Google Scholar
  4. Borgoño J, Vicent O, Venturino H, Infante A (1977) Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19:103–105.Google Scholar
  5. Bruning W (1968) El problema del hidroarsenicismo crónico regional endémico en Antofagasta. Rev Chile Pediatr 39:49–51.Google Scholar
  6. Camus P, Hajek E (1998) Transición a la democracia y medio ambiente 1990 – 1994. Historia ambiental de Chile. Doc electr:
  7. Cerda W, Gatica R, Veneros M (1999) Sistema de recuperación de aguas de descarte y disposición final de lodos arsenicados. Rev AIDIS-Chile 24:26–31.Google Scholar
  8. Clifford DA (1999) Ion Exchange and Inorganic Adsorption, 5th Ed. Water Treatment and Disposal. McGraw-Hill, New York.Google Scholar
  9. Cheng R, Liang S, Wang H, Buehler M (1994) Enhanced coagulation for arsenic removal. J Am Water Works Assoc 86(9):79–90.Google Scholar
  10. Dabeka R, McKenzie A, Lacroix G, Cleroux C, Bowe S, Graham R, Conacher H, Verdier P (1993) Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. JAOAC Int 76:14–25.Google Scholar
  11. De Gregori I, Fuentes E, Rojas M, Pinochet H, Potin-Gautier M (2003) Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities from three regions in Chile. J Environ Monit 2:287–295.CrossRefGoogle Scholar
  12. De Gregori I, Fuentes E, Olivares D, Pinochet H (2004) Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.). J Environ Monit 6:1–11.CrossRefGoogle Scholar
  13. Diaz OP, Leyton I, Munoz O, Nunez N, Devesa V, Suner MA, Velez D, Montoro R (2004) Contribution of water, bread, and vegetables (raw and cooked) to dietary intake of inorganic arsenic in a rural village of Northern Chile. J Agric Food Chem 52(6):1773–1779.CrossRefGoogle Scholar
  14. Edwards M (1994) Chemistry of Arsenic removal during coagulation and Fe-Mn oxidation. J Am Water Works Assoc 86(9)64–78.Google Scholar
  15. Enriquez H (1978) Relación entre el contenido de Arsénico en Agua y el Volcanismo Cuaternario en Chile, Bolivia y Perú. UNESCO. Documentos Técnicos en Hidrología, Montevideo.Google Scholar
  16. EHC (1981) Environmental Health Criteria, No. 18, Arsenic[DW3].Google Scholar
  17. Ferreccio C, Sancha A (2006) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24(2):164–175.Google Scholar
  18. Ferreccio C, Gonzalez C, Milosavjlevic V, Marshall G, Sancha A, Smith A (2000). Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11:673–679.CrossRefGoogle Scholar
  19. Flynn H, McMahon V, Chong G, Demergasso C, Corbisier F, Meharg A, Paton G (2002) Assessment of bioavailable arsenic and copper in soils and sediment from the Antofagasta region of northern Chile. Sci Total Environ 286:51–59.CrossRefGoogle Scholar
  20. FONDEF 2–24 (1997) Proteccion de la Competitividad de los Productos Mineros de Chile: Antecendentes y Criterios para la Regulación Ambiental del Arsénico. Final Report. Universidad de Chile, November, 1997. Project Director Ana Maria Sancha, Assistant Director Raul O'Ryan. Financed by FONDEF Conicyt.Google Scholar
  21. Fuentealba C (2003) Planta piloto para remover arsénico en una fuente subterránea de agua potable. Dissertation. Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile.Google Scholar
  22. Gonzalez K (1997) Alternativas de remoción de arsénico desde fuentes de agua potable en la II región Antofagasta y costos asociados. Dissertation. Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile.Google Scholar
  23. Granada J, Cerda W, Godoy D (2003) ESSAN: el camino para reducir notoriamente el arsénico en el agua potable. Rev AIDIS-Chile 34:44–49.Google Scholar
  24. Haynes R (1983) The geographical distribution of mortality by cause in Chile. Soc Sci Med 17:355–364.CrossRefGoogle Scholar
  25. Holm T (2002) Effects of CO3-2/bicarbonate, Si and PO4 −3 on arsenic sorption to HFO. J Am Water Works Assoc 94:174–181.Google Scholar
  26. Hopenhayn-Rich C, Browning S, Hertz-Picciotto I, Ferreccio C, Peralta C, Gibb H (2000) Chronic arsenic exposure and risk of infant mortality in two areas of Chile. Environ Health Perspect 108(7):667–673.CrossRefGoogle Scholar
  27. Ivanovic D, Aguayo M, Vásquez M, Truffelh I, Ballester D, Zacarias I (1986) Ingesta dietaria de escolares que egresan de educación básica en el Area Metropolitana de Santiago, Chile. Arch Latinoam Nutr 36:379–400.Google Scholar
  28. Ivanovic D, Zacarias I, Vásquez M (1987) Ingesta dietaria de escolares adolescentes que egresan de educación media en el Area Metropolitana de Santiago de Chile. Rev Med Chile 115:1029–1038.Google Scholar
  29. Latorre C (1966) Estudio físico-químico para la remoción del arsénico en el río Toconce. Revista Ingeniería Sanitaria 12–21, Santiago, Chile.Google Scholar
  30. McNeill LS, Edwards M (1995) Soluble arsenic removal at water treatment plants. J Am Water Works Assoc 87(4):105–113.Google Scholar
  31. McNeill LS, Edwards M (1997) Predicting As removal during metal hydroxide precipitation. J Am Water Works Assoc 89(1):75–86.Google Scholar
  32. Meng X, Bang S, Korfiatis G (2000) Effects of silicate, sulfate and carbonate on arsenic removal by ferric chloride. Water Res 34:1255–1261.CrossRefGoogle Scholar
  33. Munoz O, Diaz O, Leyton I, Nunez N, Devese V, Suner M, Velez D, Montoro R (2002) Vegetables collected in the cultivated Andean area of northern Chile: total and inorganic arsenic contents in raw vegetables. J Agric Food Chem 50:642–627.CrossRefGoogle Scholar
  34. O'Ryan R, Díaz M (2000) Risk-cost analysis for the regulation of airborne toxic substances in a developing context: the case of arsenic in Chile. Environ Resour Econ 15(2):115–134.CrossRefGoogle Scholar
  35. O'Ryan R, Lagos C (2005) Gestión Ambiental Chilena 1990–2005: Avances y Desafíos. In: Meller P (ed) La Paradoja Aparente. Equidad y Eficiencia: Resolviendo el Dilema. Taurus Impresores, Santiago, pp 529–575.Google Scholar
  36. Puga F, Olivos P, Greiber R, Gonzalez I, Heras E, Barrera S, Gonzalez E (1973) Hidroarsenicismo crónico en Antofagasta. Estudio epidemiológico y clínico. Rev Chil Pediatr 44(3):215–222.Google Scholar
  37. Queirolo F, Stegen S, Mondaca J, Cortes R, Rojas R, Contreras C, Munoz L, Schwuger MJ, Ostapczuk P (2000a) Total arsenic, lead, cadmium, copper, and zinc in some salt rivers in the northern Andes of Antofagasta, Chile. Sci Total Environ 255:85–95.CrossRefGoogle Scholar
  38. Queirolo F, Stegen S, Restovic M, Paz M, Ostapczuk P, Schwuger MJ, Munoz L (2000b) Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile. Sci Total Environ 255:75–84.CrossRefGoogle Scholar
  39. Rivara MI, Cebrian M, Corey G, Hernandez M, Romieu I (1997) Cancer risk in an arsenic-contaminated area of Chile. Toxicol Ind Health 13:321–338.Google Scholar
  40. Rosenberg H (1974) Systemic arterial disease and chronic arsenicism in infants. Arch Pathol 97:360–365.Google Scholar
  41. Roychowdhury T, Uchinot T, Tokunaga H, Ando M (2002) Survey of arsenic in food composites from an arsenic-affected area of West Bengal India. Food Chem Toxicol 40:1611–1621.CrossRefGoogle Scholar
  42. Roychowdhury T, Tokunaga H, Ando M (2003) Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Sci Total Environ 308:15–35.CrossRefGoogle Scholar
  43. Sancha A, Frenz P (2000) Estimate of the current exposure of the urban population of northern Chile to arsenic. In: Reichard E, Hauchman F, Sancha A (eds) Interdisciplinary Perspectives on Drinking Water Risk Assessment and Management. Proceedings of the Santiago (Chile) Symposium). IAHS Publication 260, pp 3–8.Google Scholar
  44. Sancha AM, Vega F, Venturino H, Fuentes S, Salazar AM, Moreno V, Baron AM, Rodriguez D (1992a) The arsenic health problem in northern Chile. Evaluation and control. A case study preliminary report. In: International Seminar Proceedings. Arsenic in the Environment and Its Incidence on Health. Universidad de Chile, Chile, pp 187–202.Google Scholar
  45. Sancha AM, Vega F, Fuentes S (1992b) Speciation of arsenic present in water inflowing to the Salar del Carmen treatment plant in Antofagasta, Chile, and its incidence on the removal process. In: International Seminar Proceedings. Arsenic in the Environment and Its Incidence on Health. Universidad de Chile, Chile, pp 183–186.Google Scholar
  46. Sancha AM, Rodriguez D, Vega F, Fuentes S, Salazar AM, Venturino H, Moreno V, Baron AM (1995) Exposure to arsenic of the Atacameño population in northern Chile. In: Assessing [DW4]and Managing Health Risks from Drinking Water Contamination: Approaches and Applications. Proceedings of the Rome Symposium. IAHS Publication No. 233, pp 141–146.Google Scholar
  47. Sancha AM, Vega F, Fuentes S, Venturino H, Baron AM, Moreno V, Salazar AM (1997) Exposición a Arsénico de la población atacameña In: 2° Simposio Internacional de Estudios Altiplanitos, Universidad de Chile, pp 109–115.Google Scholar
  48. Sancha A, O'Ryan R, Perez O (2000) The removal of arsenic from drinking water and associated costs: the Chilean case. In: Reichard E, Hauchman F, Sancha A (eds) Interdisciplinary Perspectives on Drinking Water Risk Assessment and Management. Proceedings of the Santiago (Chile) Symposium). IAHS Publication 260, pp 17–25.Google Scholar
  49. Scott K, Green J, Do H, Mc Lean S (1995) Arsenic removal by coagulation. J Am Water Works Assoc 87(4):114–126.Google Scholar
  50. Smith A, Goycolea M, Haque R, Biggs M (1998) Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. Am J Epidemiol 147:660–669.Google Scholar
  51. Ulriksen P, Cabello A (2004) Arsenic concentration in atmospheric particulate material in Chile. In: Sancha A, O'Ryan R (eds) The Environmental Regulation of Toxic Substances: The Case of Arsenic in Chile. Universidad de Chile, Chile, pp 21–33.Google Scholar
  52. Zaldivar R (1980) A morbid condition involving cardio-vascular, bronchopulmonary, digestive and neural lesions in children and young infants after dietary arsenic exposure. Zentbl Bakteriol I Abt Orig B 170:44–56.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ana María Sancha
    • 1
  • Raul O’Ryan
    • 2
  1. 1.Civil Engineering DepartmentUniversity of ChileSantiagoChile
  2. 2.Industrial Engineering Department and Center for Applied EconomicsUniversity of ChileSantiagoChile

Personalised recommendations