Biodegradation of Perfluorinated Compounds

  • John R. Parsons
  • Monica Sáez
  • Jan Dolfing
  • Pim de Voogt
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 196)

1 Introduction

In recent years, there has been increasing concern over the levels of perfluorinated and polyfluorinated chemicals, such as PFOS (perfluorosulfonate) and PFOA (perfluorooctanoic acid), in the global environment and their fate and possible adverse effects in the environment. Perfluorinated compounds (PFCs) are substances with the general formula F(CF 2) n-R, consisting of a hydrophobic alkyl chain of varying length (typically C4 to C16) and a hydrophilic end group (Table 1). The partially fluorinated compounds that contain a −CH 2CH 2− moiety between the hydrophilic part and the fully fluorinated remaining carbon chain (F(CF 2) n-CH 2CH 2-X) are called telomer substances and derive their name from the telomerization production process. Telomers are suggested to be precursors of some of the PFCs found in the environment.
Table 1

Examples of perfluorinated compounds


Chemical formula


CAS no.a




Perfluorobutane sulfonate







Reductive Dechlorination Perfluorooctanoic Acid Reductive Dehalogenation Organohalogen Compound Water Treatment Sludge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3M (2000) Docket AR-226. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxic Substances, Washington, DC.Google Scholar
  2. Alexander M (1999) Biodegradation and Bioremediation, 2nd Ed. Academic Press, London.Google Scholar
  3. Assaf-Anid N, Nies L, Vogel TM (1992) Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12. Appl Environ Microbiol 58:1057–1060.Google Scholar
  4. Balsiger C, Holliger C, Höhener P (2005) Reductive dechlorination of chlorofluorocarbons and hydrochlorofluorocarbons in sewage sludge and aquifer sediment microcosms. Chemosphere 61:361–373.CrossRefGoogle Scholar
  5. Bedard DL, van Dort H, DeWeerd KA (1998) Brominated biphenyls prime extensive microbial reductive dehalogenation of Aroclor 1260 in Housatonic River sediment. Appl Environ Microbiol 64:1786–1795.Google Scholar
  6. Bossert I, Haggblom MM, Young LY (2003) Microbial ecology of dehalogenation. In: Häggblom MM, Bossert ID (eds) Environmental Dehalogenation. Kluwer, Dordrecht, pp 33–52.Google Scholar
  7. Boulanger B, Vargao JD, Schnoor, JL, Hornbuckle KC (2005) Evaluation of perfluorooactane surfactants in a wastewater treatment system and in a commercial surface protection product. Environ Sci Technol 38:5524–5530.CrossRefGoogle Scholar
  8. Burgess DR Jr, Zachariah MR, Tsang W, Westmoreland PR (1996) Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Prog Energy Combust Sci 21:453–529.CrossRefGoogle Scholar
  9. Calafat AM, Needham LL, Kuklenyik Z, Reidy JA, Tully JS, Aquilar-Villalobos M, Naeher LP (2006) Perfluorinated chemicals in selected residents of the American continent. Chemosphere 63:490–496CrossRefGoogle Scholar
  10. Carvalho MF, Ferreira Jorge R, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298.CrossRefGoogle Scholar
  11. Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl Environ Microbiol 68:2726–2730.CrossRefGoogle Scholar
  12. de Voogt P, Berger U, de Coen, W, de Wolf W, Heimstad E, McLachlan M, van Leeuwen S, van Roon A (2006) Perfluorinated organic compounds in the European environment (Perforce). Report to the EU. University of Amsterdam, Amsterdam, The Netherlands, pp 1–126.Google Scholar
  13. Dinglasan MJA, Ye Y, Edwards EA, Mabury SA (2004) Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ Sci Technol 38:2857–2864.CrossRefGoogle Scholar
  14. Dolfing J (1990) Reductive dechlorination is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153:264–266.CrossRefGoogle Scholar
  15. Dolfing J (2000) Energetics of anaerobic degradation pathways of chlorinated aliphatic compounds. Microb Ecol 40:2–7.Google Scholar
  16. Dolfing J (2003) Thermodynamic considerations for dehalogenation. In: Häggblom MM, Bossert ID (eds) Environmental Dehalogenation. Kluwer, Dordrecht, pp 89–114.Google Scholar
  17. Dolfing J, Harrison BK (1992) Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ Sci Technol 26:2213–2218.CrossRefGoogle Scholar
  18. Dolfing J, Harrison BK (1993) Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol Ecol 13:23–29.CrossRefGoogle Scholar
  19. Dolfing J, Janssen DB (1994) Estimates of Gibbs free energy of formation of chlorinated aliphatic compounds. Biodegradation 5:21–28.Google Scholar
  20. Dolfing J, Tiedje JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol Ecol 28:293–298.CrossRefGoogle Scholar
  21. Dolfing J, Tiedje JM (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch Microbiol 149:102–105.CrossRefGoogle Scholar
  22. Dolfing J, van den Wijngaard AJ, Janssen DB (1993) Microbiological aspects of the removal of chlorinated compounds from air. Biodegradation 4:261–282.CrossRefGoogle Scholar
  23. Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Andersen MPS, Wallington TJ (2004) Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ Sci Technol 38:3316–3321.CrossRefGoogle Scholar
  24. Fetzner S (1998). Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657.CrossRefGoogle Scholar
  25. Gauthier SA, Mabury SA (2005) Aqueous photolysis of 8:2 fluorotelomer alcohol. Environ Toxicol Chem 24:1837–1846.CrossRefGoogle Scholar
  26. Gerecke AC, Hartmann PC, Heeb NV, Kohler H-PE, Giger W, Schmid P, Zennegg M, Kohler M (2005) Anaerobic degradation of decabromodiphenyl ether. Environ Sci Technol 39:1078–1083.CrossRefGoogle Scholar
  27. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342.CrossRefGoogle Scholar
  28. Hageman KJ, Istok JD, Field JA, Buscheck TE, Semprini L (2001) In situ anaerobic transformation of trichlorofluoroethene in trichloroethene contaminated groundwater. Environ Sci Technol 35:1729–1735.CrossRefGoogle Scholar
  29. Hekster F, Laane RWPM, de Voogt P (2003) Environmental and toxicity effects of perfluoroalkylated substances. Rev Environ Contam Toxicol 179:99–121CrossRefGoogle Scholar
  30. Hoff PT, Van de Vijver KI, Van Dongen W, Esmans EL, Blust R, De Coen WM (2003) Perfluorooctane sulfonic acid in bib (Trisopterus luscus) and plaice (Pleuronectes platessa) from the Western Scheldt and the Belgian North Sea: distribution and biochemical effects. Environ Toxicol Chem 22:608–614.Google Scholar
  31. Hoff PT, Scheirs J, Van de Vijver K, Van Dongen W, Esmans EL, Blust R, De Coen W (2004) Biochemical effect evaluation of perfluorooctane sulfonic acid-contaminated wood mice (Apodemus sylvaticus). Environ Health Perspect 112:681–686.CrossRefGoogle Scholar
  32. Holmes DA, Harrison BK, Dolfing J (1993) Estimation of Gibbs free energies of formation for polychlorinated biphenyls. Environ Sci Technol 27:725–731.CrossRefGoogle Scholar
  33. Hopkins GD, McCarty PL (1995) Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29:1628–1637.CrossRefGoogle Scholar
  34. Huang C-L, Harrison BK, Madura J, Dolfing J (1996) Thermodynamic prediction of dehalogenation pathways for PCDDs. Environ Toxicol Chem 15:824–836.CrossRefGoogle Scholar
  35. Hurley MD, Sulbaek Anderson MP, Wallington TJ, Ellis DA, Martin JW, Mabury SA (2004) Atmospheric chemistry of perfluorinated carboxylic acids: reactions with OH radicals and atmospheric lifetimes. J Phys Chem A 108:615–620.CrossRefGoogle Scholar
  36. Hyman MR, Page CL, Arp DJ (1994) Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol 60:3033–3035.Google Scholar
  37. Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882.CrossRefGoogle Scholar
  38. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, van Wouwe N, Yang JH, Aldous KM (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495.CrossRefGoogle Scholar
  39. Key BD, Howell RD, Criddle CS (1998) Defluorination of organofluorine sulfur compounds by Pseudomonassp. strain D2. Environ Sci Technol 32:2283–2287.CrossRefGoogle Scholar
  40. Kissa E (2001) Fluorinated Surfactants and Repellents, 2nd Ed. Dekker, New York.Google Scholar
  41. Koch V, Knaup W, Fiebig S, Geffke T, Schulze D (2007) Biodegradation kinetics of a clariant fluorotelomer-based acrylate polymer: results from a test on aerobic transformation in soil with prolonged exposure. Abstracts, SETAC Europe 17th Annual Meeting, 20–24 May 2007, Porto.Google Scholar
  42. Kondo S, Takahashi A, Tokuhashi K, Sekiya A, Yamada Y, Saito K (2002) Theoretical calculation of heat of formation for a number of moderate sized fluorinated compounds. J Fluor Chem 117:47–53.CrossRefGoogle Scholar
  43. Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056.Google Scholar
  44. Marion Meyer JJ, Grobbelaar N, Steyn PL (1990) Fluoroacetate-metabolizing pseudomonad isolated from Dichaptalum cymosum. Appl Environ Microbiol 56:2152–2155.Google Scholar
  45. Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DCG, Mabury SA (2004a) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38:373–380.CrossRefGoogle Scholar
  46. Martin JW, Kannan K, Berger U, de Voogt P, Field JA, Franklin J, Giesy JP, Harner T, Muir DC, Scott B, Kaiser MA, Järnberg U, Jones KC, Mabury SA, Schröder HF, Simcik M, Sottani C, van Bavel B, Kärrman AH, Lindström G, van Leeuwen SP (2004b) Analytical challenges hamper perfluoroalkyl research. Environ Sci Technol 38:248A–255A.CrossRefGoogle Scholar
  47. Masunaga S, Susarla S, Yonezawa Y (1996) Dechlorination of chlorobenzenes in anaerobic estuarine sediment. Water Sci Technol 33:173–180.Google Scholar
  48. McCarty PL (1997) Microbiology: breathing with chlorinated solvents. Science 276:1521–1522.CrossRefGoogle Scholar
  49. Meesters RJW, Schröder HFr (2004) Perfluorooctane sulfonate: a quite mobile anionic anthropogenic surfactant, ubiquitously found in the environment. Water Sci Technol 50:235–242.Google Scholar
  50. Natarajan R, Azerad R, Badet B, Copin E (2005) Microbial cleavage of C-F bond. J Fluorine Chem 126:425–436.CrossRefGoogle Scholar
  51. Olsen GW, Huang HY, Helzlsouer KJ, Hansen KJ, Butenhoff JL, Mandel JH (2005) Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environ Health Perspect 113:539–545.CrossRefGoogle Scholar
  52. Oltmanns RH, Müller R, Otto MK, Lingens F (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl Environ Microbiol 55:2499–2504.Google Scholar
  53. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44.CrossRefGoogle Scholar
  54. Remde A, Debus R (1996) Biodegradability of fluorinated surfactants under aerobic and anaerobic conditions. Chemosphere 32:1563–1574.CrossRefGoogle Scholar
  55. Renner R (2001) Growing concern over perfluorinated chemicals. Environ Sci Technol 35:154A–160A.CrossRefGoogle Scholar
  56. Rhoads KR, Janssen EM-L, Luthy RG, Criddle CS (2008) Aerobic biotransformation and fate of N-ethyl perflurooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. Environ Sci Technol 42:2873–2878.CrossRefGoogle Scholar
  57. Sáez M, de Voogt P, Parsons JR (2008) Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge. Environ Sci Pollut Res (in press). Google Scholar
  58. Schröder HF (2003) Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. J Chromatogr A 1020:131–151.CrossRefGoogle Scholar
  59. Schultz MM, Barofsky DF, Field JA (2003) Fluorinated alkyl surfactants. Environ Eng Sci 20:487–501.CrossRefGoogle Scholar
  60. Semprini L (1997) Strategies for the aerobic co-metabolism of chlorinated solvents. Curr Opin Biotechnol 8:296–308.CrossRefGoogle Scholar
  61. Skoczynska EM, Zegers B, de Voogt P, Parsons JR (2005) Reductive debromination of polybrominated diphenyl ethers (PBDEs) by anaerobic sediment microorganisms. Organohalogen Compd 67:572–574.Google Scholar
  62. Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73.CrossRefGoogle Scholar
  63. Sonier DN, Duran DL, Smith GB (1994) Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds. Appl Environ Microbiol 60:4567–4572.Google Scholar
  64. Speight JG (2005) Lange's Handbook of Chemistry, 16th Ed. McGraw-Hill, New York.Google Scholar
  65. Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the biodegradation of haloaromatic compounds. Science 218:115–117.CrossRefGoogle Scholar
  66. van Eekert MHA, Stams AJM, Field JA, Schraa G (1999) Gratuitous dechlorination of chloroethanes by methanogenic granular sludge. Appl Microbiol Biotechnol 51:46–52.CrossRefGoogle Scholar
  67. Vargas C, Song B, Camps M, Haggblom MM (2000) Anaerobic degradation of fluorinated aromatic compounds. Appl Microbiol Biotechnol 53:342–347.CrossRefGoogle Scholar
  68. Wang N, Szostek B, Folsom PW, Sulecki LM, Capka V, Buck RC, Berti WR, Gannon JT (2005a) Aerobic biotransformation of 14C-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant. Environ Sci Technol 39:531–538.CrossRefGoogle Scholar
  69. Wang N, Bogdan Szostek B, Buck RC, Folsom PW, Sulecki LM, Capka V, Berti WR, Gannon JT (2005b) Fluorotelomer alcohol biodegradation: direct evidence that perfluorinated carbon chains breakdown. Environ Sci Technol 39:7516–7528.CrossRefGoogle Scholar
  70. Yamada T, Lay TH, Bozzelli JW (1998) Ab initio calculations and internal rotor: contribution for thermodynamic properties S°298 and C p(T)'s (300 < T/K < 1500): group additivity for fluoroethanes. J Phys Chem A 102:7286–7293.CrossRefGoogle Scholar
  71. Yamada T, Bozzelli JW, Berry RJ (1999) Thermodynamic properties (ΔH f(298), S (298), and C p (T) (300 ≤ T ≤ 1500)) of fluorinated propanes. J Phys Chem A 103:5602–5610.CrossRefGoogle Scholar
  72. Yan D-Z, Liu H, Zhou N-Y (2006) Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John R. Parsons
    • 1
  • Monica Sáez
    • 2
  • Jan Dolfing
    • 3
  • Pim de Voogt
    • 4
    • 1
  1. 1.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamWV AmsterdamThe Netherlands
  2. 2.Department of Instrumental Analysis and Environmental ChemistryInstitute of Organic ChemistryMadridSpain
  3. 3.School of Civil Engineering and GeosciencesNewcastle UniversityUK
  4. 4.The Netherlands Kiwa Water ResearchGroningenhavenThe Netherlands

Personalised recommendations