Skip to main content

Orbital Evolution of Příbram and Neuschwanstein

  • Chapter 1: Meteor Shower Activity, Forecasting, Dust Orbits
  • Chapter
Book cover Advances in Meteoroid and Meteor Science

Abstract

The orbital evolution of the two meteorites Příbram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5,000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were five meteors found in the IAU MDC database and six NEAs with currently similar orbits to Příbram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2,000 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Bishoff, J. Zipfel, Mineralogy of the Neuschwanstein (EL6) Chondrite – First Results (abstract 1212) 34th Lunar and Planetary Science Conference (2003)

    Google Scholar 

  • W.F. Bottke, R. Jedicke, A. Morbidelli, B. Gladman, J.-M. Petit, Understanding the distribution of near-Earth objects. Science 288, 2190–2194 (2000)

    Article  ADS  Google Scholar 

  • T. Bowell, Asteroid Orbital Element Database (2007), http://www.alumnus.caltech.edu/~nolan/astorb.html

  • P. Brown, R.E. Spalding, D.O. ReVelle, E. Tagliaferri, S.P. Worden, The flux of small near-Earth objects colliding with the Earth. Nature 420, 294–296 (2002)

    Article  ADS  Google Scholar 

  • Z. Ceplecha, Multiple fall of Příbram meteorites photographed. I. Double-station photographs of the fireball and their relations to the found meteorites. Bull. Astron. Inst. Czech. 12, 21–47 (1961)

    ADS  Google Scholar 

  • I. Halliday, A.T. Blackwell, A.A. Griffin, Evidence for the existence of groups of meteorite-producing asteroidal fragments. Meteoritics 25, 93–99 (1990)

    ADS  Google Scholar 

  • D.C. Jones, I.P. Williams, High inclination meteorite streams can exist. Earth Moon Planet (2007). doi:10.1007/s11038-007-9163-5

    Google Scholar 

  • D.C. Jones, I.P. Williams, V. Porubčan, The Kappa Cygnid meteoroid complex. Mon. Not. R. Astron. Soc. 371, 684–694 (2006)

    Article  ADS  Google Scholar 

  • B.A. Lindblad, L. Neslušan, J. Svoreň, V. Porubčan, IAU Meteor Database of photographic orbits version 2003. Earth Moon Planet 93, 249–260 (2003)

    Article  ADS  Google Scholar 

  • L. Neslušan, IAU Meteor Database of Photographic Orbits (2003), http://www.astro.sk/~ne/IAUMDC/Ph2003/DATA2003/document.txt

  • J. Oberst, D. Heinlein, U. Köhler, P. Spurný, The multiple meteorite fall of Neuschwanstein: circumstances of the event and meteorite search campaigns. Meteorit. Planet. Sci. 39, 1627–1641 (2004)

    Article  ADS  Google Scholar 

  • A. Pauls, B. Gladman, Decoherence time scales for “meteoroid streams”. Meteorit. Planet. Sci. 40(8), 1241–1256 (2005)

    Article  ADS  Google Scholar 

  • V. Porubčan, I.P. Williams, L. Kornoš, Associations between asteroids and meteoroid streams. Earth Moon Planet 95, 697–712 (2004)

    Article  ADS  Google Scholar 

  • D.O. ReVelle, P.G. Brown, P. Spurný, Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteorit. Planet. Sci. 39(10), 1605–1626 (2004)

    Article  ADS  Google Scholar 

  • R.B. Southworth, G.S. Hawkins, Statistics of meteor streams. Smithson Contr. Astrophys. 7, 261–285 (1963)

    ADS  Google Scholar 

  • P. Spurný, J. Oberst, D. Heinlein, Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nature 423, 151–153 (2003)

    Article  ADS  Google Scholar 

  • H. Stauffer, H.C. Urey, Multiple fall of Příbram meteorites photographed. III. Rare gas isotopes in the Velká stone meteorite. Bull. Astron. Inst. Czech. 13, 106–109 (1962)

    ADS  Google Scholar 

  • J.S. Stuart, R.P. Binzel, Bias-corrected population, size distribution, and impact hazard for the near-Earth objects. Icarus 170(2), 295–311 (2004)

    Article  ADS  Google Scholar 

  • J.M. Trigo-Rodríguez, E. Lyytinen, D.C. Jones, J.M. Madiedo, A.J. Castro-Tirado, I.P. Williams, J. Llorca, S. Vítek, M. Jelínek, B. Troughton, F. Gálvez, Asteroid 2002NY40 as a source of meteorite-dropping bolides. Mon. Not. R. Astron. Soc. (2007). doi:10.1111/j.1365-2966.2007.12503.x

  • P. Vereš, L. Kornoš, J. Tóth, Search for very close approaching NEAs. Contrib. Astron. Obs. Skalnaté Pleso 36, 171–180 (2006)

    ADS  Google Scholar 

  • P. Vereš, J. Klačka, L. Kómar, J. Tóth, Motion of a meteoroid released from an asteroid. Earth Moon Planet (2007). doi:10.1007/s11038-007-9187-x

    Google Scholar 

  • Z. Wu, I.P. Williams, On the Quadrantid meteoroid stream complex. Mon. Not. R. Astron. Soc. 259, 617–628 (1992)

    ADS  Google Scholar 

  • J. Zipfel, B. Spettel, Schönbeck T, H. Palme, A. Bischoff, Bulk chemistry of the Neuschwanstein (EL6) chondrite – First results (abstract 1640) 34th Lunar and Planetary Science Conference (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by VEGA—the Slovak Grant Agency for Science (grant No. 1/3067/06) and by Comenius University grant UK/401/2007. The authors are grateful to reviewers I. P. Williams and D. Asher for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kornoš, L., Tóth, J., Vereš, P. (2007). Orbital Evolution of Příbram and Neuschwanstein. In: Trigo-Rodríguez, J.M., Rietmeijer, F.J.M., Llorca, J., Janches, D. (eds) Advances in Meteoroid and Meteor Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78419-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-78419-9_9

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-78418-2

  • Online ISBN: 978-0-387-78419-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics