Skip to main content

What was the Volatile Composition of the Planetesimals that Formed the Earth?

  • Chapter 4: Meteoroid Parent Bodies and Impact Hazard
  • Chapter
Advances in Meteoroid and Meteor Science

Abstract

Is there an asteroid type or meteorite class that best exemplifies the materials that went into the Earth? Carbonaceous chondrites were once the objects of choice, and in the minds of many this choice is still valid. However, the origin of primitive chondritic meteorites is unclear. At the extremes they could either be fragments of very small parent bodies that never became hot enough to undergo geochemical modification other than mild lithification, or remnants of the uppermost layers of a body that had undergone a significant degree of internal differentiation, while the top layers remained cool due to radiative heat loss or loss of volatiles to space. This latter case is problematic if one considers these objects as precursors to the Earth since the timescale for the evolution of such a small body could be longer than the timescale for the accretion of the Earth. Large-scale circulation of materials in the primitive solar nebula could greatly increase the diversity of materials near 1 AU while also making the entire inner solar system both more homogeneous and much wetter than previously expected. The total mass of the nebula is an important, but poorly constrained factor controlling the growth of planetesimals. There is also a selection effect that dominates our sampling of the planetesimals that may have existed 4.5 billion years ago; namely, small fragile bodies are more likely to be lost from the system or ground down by collisions between small bodies, yet these are precisely those that may have dominated the population from which the Earth accreted. The composition of these aggregates could have played a very important role in the early chemical evolution of the Earth. In particular, the Earth may have been much wetter and richer in hydrocarbons and other reducing materials than previously suspected.

The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A.P. Boss, Evolution of the solar nebula. VI. Mixing and transport of isotopic heterogeneity. Astrophys. J. 616, 1265–1277 (2004)

    Article  ADS  Google Scholar 

  • P.G. Brown, A.R. Hildebrand, M.E. Zolensky, M. Grady et al., The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science 290, 320–325 (2000)

    Article  ADS  Google Scholar 

  • A.G.W. Cameron, W. Benz, The origin of the moon and the single impact hypothesis. IV. Icarus 92, 204–216 (1991)

    Article  ADS  Google Scholar 

  • R.M. Canup, Simulations of a late lunar forming impact. Icarus 168, 433–456 (2004)

    Article  ADS  Google Scholar 

  • R.M. Canup, E. Asphaug, Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001)

    Article  ADS  Google Scholar 

  • N.L. Chabot H. Haack, Evolution of asteroidal cores, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 747–741

    Google Scholar 

  • C.F. Chyba, T.C. Owen, W.-H. Ip, Impact delivery of volatiles and organic molecules to earth, in Hazards Due to Comets and Asteroids, ed. by T. Gehrels (University of Arizona Press, Tucson, 1994), pp. 9–58

    Google Scholar 

  • F.J. Ciesla, Outward transport of high temperature materials around the midplane of the solar nebula. Science 318, 613–615 (2007)

    Article  ADS  Google Scholar 

  • F.J. Ciesla, S.B. Charnley, The physics and chemistry of nebular evolution, in Meteorites and the Early Solar System II, ed by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 209–230

    Google Scholar 

  • F.J. Ciesla, J.N. Cuzzi, The distribution of water in a viscous protoplanetary disk (abstract), in Lunar and Planetary Science, 36, #1479 (CD-ROM) (Lunar and Planetary Institute, Houston, Texas, 2005)

    Google Scholar 

  • F.J. Ciesla, J.N. Cuzzi, The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006)

    Article  ADS  Google Scholar 

  • A. Das, G. Srinivisan, Rapid melting of planetesimals due to radioactive decay of Al-26: a case study of planetary bodies with variable aluminum abundance (abstract). Lunar Planetary Science Conference 38, #2370, Lunar and Planetary Institute, Houston, Texas, 2007

    Google Scholar 

  • B. Donn, The accumulation and structure of comets, in Comets in the Post Halley Era, ed by R.L. Newburn, M. Neugebauer, J. Rahe (Kluwer, Dordrecht, The Netherlands, 1991), pp. 335–359

    Google Scholar 

  • M.J. Drake, Origin of water in the terrestrial planets. Meteorit. Planet. Sci. 40, 519–527 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • M.J. Drake, K. Righter, Determining the composition of the earth. Nature 416, 39–44 (2002)

    Article  ADS  Google Scholar 

  • E.D. Feigelson, K. Getman, L. Townsley, G. Garmire, T. Preibisch, N. Grosso, T. Montmerle, A. Muench, M. McCaughrean, Global X-Ray properties of the Orion Nebula region. Astrophys. J. Suppl. 160, 379–389 (2005)

    Article  ADS  Google Scholar 

  • E. Feigelson, L. Townsley, M. Gudel, K. Stassun, X-ray properties of young stars and stellar clusters, in Protostars and Planets V, ed by B. Reipurth, D. Jewett, K. Keil (University of Arizona Press, Tucson, 2006), pp. 313–328

    Google Scholar 

  • R.S. Gomes, A. Morbidelli, H.F. Levison, Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004)

    Article  ADS  Google Scholar 

  • R.S. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    Article  ADS  Google Scholar 

  • A. Ghosh, S.J. Weidenschilling, H.Y. McSween, A. Rubin, Asteroidal heating and thermal stratification of the asteroid belt, in Meteorites and the Early Solar System II ed by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 555–566

    Google Scholar 

  • M. Gounelle, F.H. Shu, H. Shang, A.E. Glassgold, E.K. Rehm, T. Lee, Extinct radioactivities and protosolar cosmic-rays: Self-shielding and light elements. Astrophys. J. 548, 1051–1070 (2001)

    Article  ADS  Google Scholar 

  • M. Gounelle, O. Spurný, P.A. Bland, The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteorit. Planet. Sci. 41, 135–150 (2006)

    Article  ADS  Google Scholar 

  • L. Hartmann, N. Calvet, E. Gullbring, P. D’Alessio, Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998)

    Article  ADS  Google Scholar 

  • L. Hartmann, J. Ballesteros-Paredes, E.A. Bergin, Rapid formation of molecular clouds and stars in the solar neighborhood. Astrophys. J. 562, 852–868 (2001)

    Article  ADS  Google Scholar 

  • W.K. Hartmann, G. Ryder, L. Dones, D. Grinspoon, The time-dependent intense bombardment of the primordial Earth/Moon system, in Origin of the Earth and Moon, ed by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 493–512

    Google Scholar 

  • J.J. Hester, S.J. Desch, K.R. Healy, L.A. Leshin, The cradle of the solar system. Science 304, 1116–1117 (2004)

    Article  ADS  Google Scholar 

  • G.R. Huss, Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism. Nature 347, 159–162 (1990)

    Article  ADS  Google Scholar 

  • G.R. Huss, R.S. Lewis, Noble gases in presolar diamonds II: component abundances reflect thermal processing. Meteoritics 29, 811–829 (1994)

    ADS  Google Scholar 

  • G.R. Huss, R.S. Lewis, Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta. 59, 115–160 (1995)

    Article  ADS  Google Scholar 

  • G. R. Huss, A. E. Rubin, J.N. Grossman, Thermal metamorphism in chondrites, in Meteorites and the Early Solar System II, ed by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson 2006), pp. 567–586

    Google Scholar 

  • S. Jacobsen, How old is planet earth? Science 300, 1513–1514 (2003)

    Article  Google Scholar 

  • S.B. Jacobsen, The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 33, 531–570 (2005)

    Article  ADS  Google Scholar 

  • T. Kleine, C. Münker, K. Metzger, H. Palme, Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    Article  ADS  Google Scholar 

  • T. La Tourette, G.J. Wasserburg, Mg diffusion in anorthite: implications for the formation of early solar system planetesimals. Earth Planet. Sci. Lett. 158, 91–108 (1998)

    Article  ADS  Google Scholar 

  • H.F. Levison, L. Dones, C.R. Chapman, S.A. Stern, M.J. Duncan, K. Zahnle, Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286–306 (2001)

    Article  ADS  Google Scholar 

  • H.F. Levison, A. Morbidelli, R. Gomes, D. Backman, Planet migration in planetesimal disks, in Protostars and Planets V, ed by B. Reipurth, D. Jewett, K. Keil (University of Arizona Press, Tucson, 2006), pp. 669–684

    Google Scholar 

  • J.I. Lunine, Origin of water ice in the solar system, in Meteorites and the Early Solar System II, ed by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 309–219

    Google Scholar 

  • P. Meakin, B. Donn, Aerodynamic properties of fractal grains: implications for the primordial solar nebula. Astrophys. J. 329, L39–L41 (1988)

    Article  ADS  Google Scholar 

  • S.L. Miller, A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953)

    Article  ADS  Google Scholar 

  • S.L. Miller, H.C. Urey, Organic compound synthesis on the primitive earth. Science 130, 245–251 (1959)

    Article  ADS  Google Scholar 

  • R.H. Nichols, Chronological constraints on planetesimal accretion, in Meteorites and the Early Solar System II, ed by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 463–472

    Google Scholar 

  • F.J.M. Rietmeijer, Interplanetary dust particles, in Planetary Materials, Reviews in Mineralogy, vol. 36, ed by J.J. Papike (Mineralogical Society of America, Chantilly, Virginia, 1998), pp. 2-1–2-95

    Google Scholar 

  • K. Righter, Not so rare Earth? New developments in understanding the origin of the Earth and Moon. Chemie der Erde. 67, 179–200 (2007)

    Article  ADS  Google Scholar 

  • K. Righter, M.J. Drake, E. Scott, Compositional relationships between meteorites and terrestrial planets, in Meteorites and the Early Solar System II, ed by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson 2006), pp. 803–828

    Google Scholar 

  • C.P. Sonett, D.S. Colburn, The principle of solar wind induced planetary dynamos. Phys. Earth Planet. Inter. 1, 326–346 (1968)

    Article  ADS  Google Scholar 

  • C.P. Sonett, D.S. Colburn, K. Schwartz, Electrical heating of meteorite parent bodies and planets by dynamo induction from a premain sequence T Tauri “solar wind”. Nature 219, 924–926 (1968)

    Article  ADS  Google Scholar 

  • M. Stimpfl, M.J. Drake, N.H. de Leeuw, P. Deymeier, A.M. Walker, Effect of composition on adsorption of water on perfect olivine (abstract). Geochim. Cosmochim. Acta. 70, A615 (2006a)

    Article  ADS  Google Scholar 

  • M. Stimpfl, A.M. Walker, M.J. Drake, N.H. de Leeuw, P. Deymier, An angstrom-sized window on the origin of water in the inner solar system: atomistic simulation of adsorption of water on olivine. J. Cryst. Growth. 294, 83–95 (2006b)

    Article  ADS  Google Scholar 

  • M. Wadhwa, Y. Amelin, A.M. Davis, G.W. Lugmair, B. Meyer, M. Gounelle, S.J. Desch, From dust to planetesimals: implications for the solar protoplanetary disk from short-lived radionuclides, in Protostars and Planets V, ed by B. Reipurth, D. Jewett, K. Keil (University of Arizona Press, Tucson, 2006), pp. 835–848

    Google Scholar 

  • S.R. Weidenschilling, The origin of comets in the solar nebula: A unified model. Icarus 127, 290–306 (1997)

    Article  ADS  Google Scholar 

  • G.W. Wetherill, Occurrence of giant impacts during the growth of the terrestrial planets. Science 228, 877–879 (1985)

    Article  ADS  Google Scholar 

  • G.W. Wetherill, The formation and habitability of extra-solar planets. Icarus 119, 219–238 (1996)

    Article  ADS  Google Scholar 

  • G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989)

    Article  ADS  Google Scholar 

  • G.W. Wetherill, G.R. Stewart, Formation of planetary embryos—effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190 (1993)

    Article  ADS  Google Scholar 

  • D.S. Woolum, P. Cassen, Astronomical constraints on nebular temperatures: implications for planetesimal formation. Meteorit. Planet. Sci. 34, 897–907 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Nuth III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 US Government

About this chapter

Cite this chapter

Nuth, J.A. (2007). What was the Volatile Composition of the Planetesimals that Formed the Earth?. In: Trigo-Rodríguez, J.M., Rietmeijer, F.J.M., Llorca, J., Janches, D. (eds) Advances in Meteoroid and Meteor Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78419-9_60

Download citation

Publish with us

Policies and ethics