Advertisement

What can We Learn about Atmospheric Meteor Ablation and Light Production from Laser Ablation?

  • R. L. HawkesEmail author
  • E. P. Milley
  • J. M. Ehrman
  • R. M. Woods
  • J. D. Hoyland
  • C. L. Pettipas
  • D. W. Tokaryk
Chapter 3: Meteor-Atmosphere Interactions

Abstract

Laboratory based laser ablation techniques can be used to study the size of the luminous region, predict spectral features, estimate the luminous efficiency factor, and assess the role of chemically differentiated thermal ablation. A pulsed Nd:YAG laser was used to ablate regions from ordinary and carbonaceous chondrite meteorites. CCD cameras and a digital spectroscope were used to measure the size and spectrum from the cloud of vaporised material. Scanning electron microscope (SEM) based energy dispersive x-ray spectroscopy (EDS) provided elemental abundance values in ablated and unablated regions. These results indicated some degree of differential ablation, with the most significant effect being significant loss of carbon from carbonaceous chondrites. This work suggests that a carbon matrix may play the role of the glue in the two component dustball model.

Keywords

Meteors Meteoroids Meteorite Methods: laboratory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.D. Boyd, Earth Moon Planets 82–83, 93 (2000)Google Scholar
  2. J. Borovicka, R. Stork, J. Bocek, Meteorit. Planet. Sci. 34, 987 (1999)ADSCrossRefGoogle Scholar
  3. Z. Ceplecha, J. Borovicka, W.G. Elford et al., Space Sci. Rev. 84, 327 (1998)CrossRefADSGoogle Scholar
  4. S.M. Clegg, R.C. Wiens, M.D. Dyar et al., LPS XXXVIII, 1338, 1960 (2006)Google Scholar
  5. A.A. Fisher, R.L. Hawkes, I.S. Murray et al., Planet. Space Sci. 48, 911 (2000)CrossRefADSGoogle Scholar
  6. R.L. Hawkes, P.G. Brown, N.R. Kaiser et al., Earth Moon Planets 95, 587 (2005)CrossRefADSGoogle Scholar
  7. R.L. Hawkes, J. Jones, Mon. Not. R. Astron. Soc. 173, 339 (1975)ADSGoogle Scholar
  8. N. Kaiser, P.G. Brown, R.L. Hawkes, Earth Moon Planets 95, 579 (2005)CrossRefADSGoogle Scholar
  9. W.J. McNeil, R.A. Dressler, E.J. Murad, Geophys. Res. 106(A6), 10447 (2001)CrossRefADSGoogle Scholar
  10. E.P. Milley, R.L. Hawkes, J.M. Ehrman, Mon. Not. R. Astron. Soc. 382, L67 (2007)CrossRefADSGoogle Scholar
  11. O.P. Popova, S.N. Sidneva, V.V. Shuvalov, A.S. Strelkov, Earth Moon Planets 82–83, 1098 (2000)Google Scholar
  12. L. Schaefer, B. Fegley, Earth Moon Planets 95, 413 (2005)CrossRefADSGoogle Scholar
  13. L. Shadbolt, R.L. Hawkes, Earth Moon Planets 68, 493 (1995)CrossRefADSGoogle Scholar
  14. J.R. Thompson, R.C. Wiens, J.E. Barefield et al., JGR 111, E05006 (2006)CrossRefGoogle Scholar
  15. U. von Zahn, M. Gerding, J. Hffner et al., Meteorit. Planet. Sci. 34, 1017 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • R. L. Hawkes
    • 1
    Email author
  • E. P. Milley
    • 1
  • J. M. Ehrman
    • 2
  • R. M. Woods
    • 1
  • J. D. Hoyland
    • 1
  • C. L. Pettipas
    • 1
  • D. W. Tokaryk
    • 3
  1. 1.Physics DepartmentMount Allison UniversitySackvilleCanada
  2. 2.Digital Microscopy FacilityMount Allison UniversitySackvilleCanada
  3. 3.Department of Physics and Centre for Laser, Atomic and Molecular SciencesUniversity of New BrunswickFrederictonCanada

Personalised recommendations