Advertisement

The Dynamics of Low-Perihelion Meteoroid Streams

  • Paul A. WiegertEmail author
Chapter 1: Meteor Shower Activity, Forecasting, Dust Orbits

Abstract

The Canadian Meteor Orbit Radar (CMOR) has collected information on a number of weak meteor showers that have not been well characterized in the literature. A subsample of these showers (1) do not show a strong orbital resemblance to any known comets or asteroids, (2) have highly inclined orbits, (3) are at low perihelion distances (\(\ll 1\) AU) and (4) are at small semimajor axes (<2 AU). Though one might conclude that the absence of a parent object could be the result of its disruption, it is unclear how this relatively inaccessible (dynamically speaking) region of phase space might have been populated by parents in the first place. It will be shown that the Kozai secular resonance and/or Poynting–Robertson drag can modify meteor stream orbits rapidly (on time scales comparable to a precession cycle) and may be responsible for placing some of these streams into their current locations. These same effects are also argued to act on these streams so as to contribute to the high-ecliptic latitude north and south toroidal sporadic meteor sources. There remain some differences between the simple model results presented here and observations, but there may be no need to invoke a substantial population of high-inclination parents for the observed high-inclination meteoroid streams with small perihelion distances.

Keywords

Meteoroid stream Poynting–Robertson drag Secular resonance Toroidal meteor sources Meteor shower Sporadic meteors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.B. Babadzhanov, I.V. Obrubov, Evolution of meteoroid streams, in European Regional Astronomy Meeting of the IAU, eds. by Z. Ceplecha, P. Pecina, vol. 2 (Czechoslovak Academy of Sciences, Ondrejov, Czechoslovakia, 1987), pp. 141–150Google Scholar
  2. P.B. Babadzhanov, Y.V. Obrubov, P/Machholz 1986 VIII and Quadrantid meteoroid stream. Orbital evolution and relationship, in Asteroids, Comets, Meteors 1991, eds. by A. Harris, E. Bowell (University Arizona Press, Tucson, 1992), pp. 27–32Google Scholar
  3. S. Breiter, A.A. Jackson, Unified analytical solutions to two-body problems with drag, MNRAS 299, 237–243 (1998)CrossRefADSGoogle Scholar
  4. P. Brown, R.J. Weryk, D.K. Wong, J. Jones, The Canadian Meteor Orbit Radar (CMOR) Meteor Shower Catalogue, Earth Moon Planets, this issue (2007). doi: 10.1007/s11038-007-9162-6 Google Scholar
  5. J.E. Chambers, A hybrid symplectic integrator that permits close encounters between massive bodies, MNRAS 304, 793–799 (1999)CrossRefADSGoogle Scholar
  6. J.D. Drummond, A test of comet and meteor shower associations. Icarus 45, 545–553 (1981)CrossRefADSGoogle Scholar
  7. D.P. Galligan, W.J. Baggaley, The orbital distribution of radar-detected meteoroids of the Solar system dust cloud. MNRAS 353, 422–446 (2004). doi: 10.1111/j.1365-2966.2004.08078.x
  8. R. Gonczi, H. Rickman, C. Froeschlé, The connection between Comet P/Machholz and the Quadrantid meteors, MNRAS 254, 627–634 (1992)ADSGoogle Scholar
  9. E. Grun, H.A. Zook, H. Fechtig, R.H. Giese, Collisional balance of the meteoritic complex, Icarus 62, 244–272 (1985). doi: 10.1016/0019-1035(85)90121-6 Google Scholar
  10. P. Jenniskens, 2003 EH1 is the Quadrantid shower parent comet, Astron. J. 127, 3018–3022 (2004)CrossRefADSGoogle Scholar
  11. J. Jones, P. Brown, Sporadic meteor radiant distributions-orbital survey results, MNRAS 265, 524–532 (1993)ADSGoogle Scholar
  12. J. Jones, W. Jones, Comet Machholz and the Quadrantid meteor stream, MNRAS 261, 605–611 (1993)ADSGoogle Scholar
  13. J. Jones, P. Brown, K.J. Ellis, A.R. Webster, M. Campbell-Brown, Z. Krzemenski, R.J. Weryk, The Canadian Meteor Orbit Radar: system overview and preliminary results, Plan Space Sci. 53, 413–421 (2005)CrossRefADSGoogle Scholar
  14. Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity, Astron. J. 67, 591–598 (1962)CrossRefADSMathSciNetGoogle Scholar
  15. B.G. Marsden, G.V. Williams, Catalogue of Cometary Orbits, 16th edn. (IAU Central Bureau for Astronomical Telegrams—Minor Planet Center, Cambridge, 2005)Google Scholar
  16. B.A. McIntosh, Comet P/Machholtz and the Quadrantid meteor stream, Icarus 86, 299–304 (1990)CrossRefADSGoogle Scholar
  17. E.J. Opik, Collision probability with the planets and the distribution of planetary matter, Proc. R. Ir. Acad. Sect. A 54, 165–199 (1951)Google Scholar
  18. R.B. Southworth, G.S. Hawkins, Statistics of meteor streams, Smithsonian Contrib. Astrophys. 7, 261–285 (1963)ADSGoogle Scholar
  19. G.B. Valsecchi, T.J. Jopek, C. Froeschle, Meteoroid stream identification: a new approach—I. Theory, MNRAS 304, 743–750 (1999)CrossRefADSGoogle Scholar
  20. S.J. Weidenschilling, A.A. Jackson, Orbital resonances and Poynting–Robertson drag, Icarus 104, 244–254 (1993)CrossRefADSGoogle Scholar
  21. P. Wiegert, P. Brown, The Quadrantid meteoroid complex, Icarus 179, 139–157 (2005). doi: 10.1016/j.icarus.2005.05.019 Google Scholar
  22. J. Wisdom, M. Holman, Symplectic maps for the n-body problem, Astron. J. 102, 1528–1538 (1991)CrossRefADSGoogle Scholar
  23. S.P. Wyatt, F.L. Whipple, The Poynting–Robertson effect on meteor orbits, Astrophys. J. 111, 134–141 (1950)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe University of Western OntarioLondonCanada

Personalised recommendations