Advertisement

Comparison of Meteoroid Flux Models for Near Earth Space

  • Gerhard DrolshagenEmail author
  • Valeri Dikarev
  • Markus Landgraf
  • Holger Krag
  • Wim Kuiper
Chapter 1: Meteor Shower Activity, Forecasting, Dust Orbits

Abstract

Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Divine-Staubach and the Dikarev model. They typically cover mass ranges from 10−18 g to 1 g and are applicable for model specific Sun distance ranges between 0.1 AU and 20 AU Near 1 AU averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Grün et al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical and radar) and in situ (captured Inter Stellar Dust Particles, in situ detectors and analysis of retrieved hardware) measurements and simulations.

Keywords

Meteoroids Meteoroid Flux models Near Earth space Interplanetary meteoroid models Space dust IMEM Divine model Divine-Staubach model Impact flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Dikarev, E. Grün, M. Landgraf, R. Jehn, Update of the ESA meteoroid model, in Proceedings of the 4th European Conference on Space Debris, (ESA SP-587, 2005a), pp. 271–277Google Scholar
  2. V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, The new ESA meteoroid model. Adv. Space Res. 35(issue 7), 1282–1289 (2005b)CrossRefADSGoogle Scholar
  3. V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, Modeling the sporadic meteoroid background cloud. Earth Moon Planets 95, 109–122 (2005c)CrossRefADSGoogle Scholar
  4. N. Divine, Five populations of interplanetary meteoroids. J. Geophys. Res. 98, 17029–17048 (1993)CrossRefADSGoogle Scholar
  5. E. Grün, H.A. Zook, H. Fechtig, R.H. Giese, Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985)CrossRefADSGoogle Scholar
  6. E. Grün, P. Staubach, M. Baguhl, D.P. Hamilton, H.A Zook, S. Dermott, B.A. Gustafson, H. Fechtig, J. Kissel, D. Linkert, G. Linkert, R. Srama, M.S. Hanner, C. Polanskey, M. Horanyi, B.A. Lindblad, I. Mann, J.A.M McDonnell, G.E. Morfill, G Schwehm, South–North and radial traverses through the interplanetary dust cloud. Icarus 129(issue 2), 270–288 (1997)CrossRefADSGoogle Scholar
  7. J. Jones, Meteoroid engineering model—final report. NASA/MSFC internal report SEE/CR-2004, 400 (2004)Google Scholar
  8. D.J. Kessler, R.C. Reynolds, P.D. Anz-Meador, Space station program natural environment definition for design, international space station alpha. NASA SSP 30425, Revision B, national aeronautics and space administration space station program office, Houston, TX, USA (1994)Google Scholar
  9. P. Staubach, E. Grün, R Jehn, The meteoroid environment near Earth. Adv. Space Res. 19(issue 2), 301–308 (1996)ADSGoogle Scholar
  10. A.D. Taylor, The harvard radio meteor project meteor velocity distribution reappraised. Icarus 116, 154–158 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Gerhard Drolshagen
    • 1
    Email author
  • Valeri Dikarev
    • 2
  • Markus Landgraf
    • 3
  • Holger Krag
    • 3
  • Wim Kuiper
    • 1
    • 4
  1. 1.TEC-EESESA/ESTECNoordwijkThe Netherlands
  2. 2.MPI For Solar System ResearchKatlenburg-LindauGermany
  3. 3.ESA/ESOCDarmstadtGermany
  4. 4.RheaTech Ltd.LondonUK

Personalised recommendations