Skip to main content

Hearing in Marine Animals

  • Chapter
  • First Online:
Principles of Marine Bioacoustics

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, S. (1970a). “Auditory Sensitivity of the Harbor Porpoise (Phocoena phocoena),” Invest. Cetacea 2, 255–259.

    Google Scholar 

  • Andersen, S. (1970b). “Directional Hearing in the Harbor Porpoise (Phocoena phocoena),” Invest. Cetacea 2, 260–263.

    Google Scholar 

  • Astrup, J. and Møhl, B. (1993). “Detection of intense ultrasound by the cod Gadus morhua,” J. Exp. Biol. 182, 71–80.

    Google Scholar 

  • Au, W. W. L. and Moore, P. W. B. (1984). “Receiving Beam Patterns and Directivity Indices of the Atlantic Bottlenose Dolphin (Tursiops truncates),” J. Acoust. Soc. Am. 75, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Au, W. W. L. and Moore, P. W. B. (1990). “Critical Ratio and Critical Bandwidth for the Atlantic Bottlenose Dolphin,” J. Acoust. Soc. Am. 88, 1635–1638.

    Article  PubMed  CAS  Google Scholar 

  • Bain, D. and Dallheim, M. E. (1992). Personal Communications.

    Google Scholar 

  • Blodgett, H. C., Jeffress, L. A., and Taylor, R. W. (1958). “Relation of masked threshold to signal-duration for various interaural phase-combinations,” Am. J. Psychol. 71, 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Bobber, R. J. (1970). Underwater Electroacoustic Measurements (U.S. Govern. Printing Office, Washington, DC).

    Google Scholar 

  • Braun, C. B., Coombs, S., and Fay, R. R. (2002). “Multisensory interactions within the octavolateralis systems: What is the nature of multisensory integration?” Brain, Behav. and Evol. 59, 162–176.

    Article  Google Scholar 

  • Chapman, C. J. and Sand, O. (1974). “Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae),” Comp. Biochem. Physiol. 47A, 371–385.

    Article  Google Scholar 

  • Chapman, C. J. and Johnstone, A. D. F. (1974). “Some auditory discrimination experiments on marine fish,” J. Exp. Biol. 61, 521–528.

    PubMed  CAS  Google Scholar 

  • de Munck, J. C. and Schellart, N. A. M. (1987). “A model for the nearfield acoustics of the fish swimbladder and its relevance for directional hearing,” J. Acoust. Soc. Am. 81, 556–560.

    Article  PubMed  Google Scholar 

  • Dudok van Heel, W. H. (1962). “Sound and Cetacea,” Nether. J. Sea. Res. 1, 407–507.

    Article  Google Scholar 

  • Enger, P. S. (1966). “Acoustic threshold in goldfish and its relation to the sound source distance,” Comp. Biochem. Physiol. 18, 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Enger, P. S. (1981). “Frequency discrimination in teleosts – central or peripheral?” in Hearing and Sound Communication in Fishes, W. N. Tavolga, A. N. Popper and R. R. Fay, eds. (Springer-Verlag, New York), pp. 243–255.

    Google Scholar 

  • Enger, P. S., Hawkins, A. D., Sand, O. and Chapman, C. J. (1973). “Directional sensitivity of saccular microphonic potentials in the haddock,” J. Exp. Biol. 59, 425–433.

    PubMed  CAS  Google Scholar 

  • Fay, R. R. (1969). “Behavioral audiogram for the goldfish,” J. Aud. Res. 9, 112–121.

    Google Scholar 

  • Fay, R. R. (1974). “Auditory frequency discrimination in vertebrates,” J. Acoust. Soc. Am. 56, 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1978). “Coding of information in single auditory-nerve fibers of the goldfish,” J. Acoust. Soc. Am. 63, 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1984). “The goldfish ear codes the axis of acoustic particle motion in three dimensions,” Science 225, 951–954.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1988). Hearing in Vertebrates: A Psychophysics Databook (Hill-Fay Assoc., Winnetka, Illinois).

    Google Scholar 

  • Fay, R. R. and Edds-Walton, P. L. (1997). “Directional response properties of saccular afferents of the toadfish, Opsanus tau,” Hear. Res. 111, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. and Patricoski, M. L. (1980). “Sensory mechanisms for low frequency vibration detection in fishes,” in Abnormal Animal Behavior Prior to Earthquakes, II, R. Buskirk, ed. (U.S. Geological Survey Open File Report 80–453), pp. 63–91.

    Google Scholar 

  • Fay, R. R. and Popper, A. N. (eds.). (1999). Comparative Hearing: Fish and Amphibians, Spring Handbook of Auditory Research, Vol. 11, (Springer New York), 438 p.

    Google Scholar 

  • Finnerana, J. J., Schlundt, C. E., Carder, D. A., Clark, J. A., and Young, J. A., Gaspin, J. B., and Ridgway, S. H. (2000). “Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions,” J. Acoust. Soc. Am. 108, 417–431.

    Article  Google Scholar 

  • Fletcher, H. (1940). “Auditory Patterns,” Rev. Mod. Phys. 12, 47–65.

    Article  Google Scholar 

  • Forsythe, F. E., Malcolm, M. A., and Moler, C. B. (1977). Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, NJ).

    Google Scholar 

  • French, N. R. and Steinberg, J. C. (1947). “Factors Governing the Intelligibility of Speech Sound,” J. Acoust. Soc. Am. 19, 90–119.

    Article  Google Scholar 

  • Gentry, R. L. (1967). “Underwater Auditory Localization in the California Sea Lion (Zalophus californianus),” J. Aud. Res. 7, 187–193.

    Google Scholar 

  • Gerstein, E. R., Gerstein, L. A., Forsythe, S. E., and Blue, J. E. (1993). “Underwater Audiogram of a West Indian Manatee (Trichecus manatus),” Proc. Tenth Bien Conf. Biol. Mar. Mamm., (Galveston, Texas), P. 53 (A).

    Google Scholar 

  • Gerstein, E. R., Gerstein, L. A., Forsythe, S. E., and Blue, J. E. (1999). “The Underwater Audiogram of the West Indian Manatee (Trichechus manatus),” J. Acoust. Soc. Am. 105, 3575–3583.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. D. and Johnson, C. S. (1971). “Auditory Thresholds of a Killer Whale,” J. Acoust. Soc. Am. 51, 515–517.

    Article  Google Scholar 

  • Hamilton, P. M. (1957). “Noise masked thresholds as a function of tonal duration and masking band width,” J. Acoust. Soc. Am. 29, 506–511.

    Article  Google Scholar 

  • Hastings, M. C. (1995). “Physical effects of noise on fishes,” Proceedings of INTER-NOISE 95, The International Congress on Noise Control Engineering, Vol. II, pp. 979–984.

    Google Scholar 

  • Hastings, M. C., Popper, A. N., Finneran, J. J., and Lanford, P. J. (1996). “Effect of low frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus,” J. Acoust. Soc. Am. 99, 1759–1766.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, A. D. (1981). “The hearing abilities of fish,” in Hearing and Sound Communication in Fishes, W. N. Tavolga, A. N. Popper and R. R. Fay, eds. (Springer-Verlag, New York), pp. 109–137.

    Google Scholar 

  • Hawkins, J. E. and Stevens, S. S. (1950). “The Masking of Pure Tones and Speech by White Noise,” J. Acoust. Soc. Am. 22, 6–13.

    Article  Google Scholar 

  • Heffner, R. S. and Heffner, H. E. (1992). “Hearing in Large Mammals: Sound-localization Acuity in Cattle (Bos Taurus) and Goats (Capra hircus),” J. Comp. Psychol. 106, 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Herman, L. M. and Arbeit, W. R. (1972 ). “Frequency Difference Limens in the Bottlenose Dolphin: 1-70 kHz,” J. Aud. Res. 12, 109–120.

    Google Scholar 

  • Higgs, D. M., Plachta, D. T. T., Rollo, A. K., Singheiser, M., Hastings, M. C., and Popper, A. N. (2004). “Development of ultrasound detection in American Shad (Alosa sapidissima),” J. Exp. Biol. 207, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Holt, M. M., Schusterman, R. J., Southall, B. L., and Kastak, D. (2004). “Localization of aerial Broadband Noise by Pinnipeds,” J. Acoust. Soc. Am. 115, 2339–2345.

    Article  PubMed  Google Scholar 

  • Hughes, J. W. (1946). “The Threshold of Audition for Short Periods of Stimulation,” Proc. Roy. Soc. (London) b133, 486–490.

    Google Scholar 

  • Jacobs, D. W. (1972). “Auditory Frequency Discrimination in the Atlantic Bottlenose Dolphin (Tursiops truncates) Montagu: A Preliminary Report,” J. Acoust. Soc. Am. 53, 696–698.

    Article  Google Scholar 

  • Jacobs, D. W. and Hall, J. D. (1972). “Auditory Thresholds of a Fresh Water Dolphin (Inia geoffrensis) Blainville,” J. Acoust. Soc. Am. 51, 530–533.

    Article  Google Scholar 

  • Johnson, S. C. (1967). “Sound Detection Thresholds in Marine Mammals,” in Marine Bio-Acoustics, W. Talvoga, ed. (Pergamon Press, New York), pp. 247–260.

    Google Scholar 

  • Johnson, S. C. (1968a). “Relation Between Absolute Threshold and Duration of Tone Pulse in the Bottlenosed Porpoise,” J. Acoust. Soc. Am. 43, 757–763.

    Article  CAS  Google Scholar 

  • Johnson, S. C. (1968b). “Masked Tonal Thresholds in the Bottlenosed Porpoise,” J. Acoust. Soc. Am. 44, 965–967.

    Article  CAS  Google Scholar 

  • Johnson, S. C. (1971). “Auditory Masking of One Pure Tone by Another in the Bottlenose Porpoise,” J. Acoust. Soc. Am. 49, 1317–1318.

    Article  Google Scholar 

  • Johnson, S. C., McManus, M. W., and Skaar, D. (1989). “Masked Tonal Thresholds in the Belukha Whale,” J. Acoust. Soc. Am. 85, 2651–2654.

    Article  PubMed  CAS  Google Scholar 

  • Kastak, D. A. (1996). “Comparative Aspects of Hearing in Pinnipeds,” Ph.D. dissertation, U. C. Santa Cruz.

    Google Scholar 

  • Kastak, D. and Schusterman, R. J. (2002). “Changes in auditory sensitivity with depth in a free-diving California se lion (Salophus californianus),” J. Acoust. Soc. Am. 112, 329–333.

    Article  PubMed  Google Scholar 

  • Ketten, D. R. (2000). “Cetacean Ears,” in Hearing by Whales and Dolphins, W. W. L. Au, A. N. Popper, and R. R. Fay, eds. (Springer-Verlag, New York), pp. 43–108.

    Chapter  Google Scholar 

  • Kleerekoper, H. and Roggenkamp, P. A. (1959). “An experimental Study on the Effect of the Swimbladder on Hearing Sensitivity in Ameiurus nebulosus nebulosus (LeSueur),” Can. J. Zool. 37, 1–8.

    Google Scholar 

  • Ladich, F. and Wysocki, L. E. (2003). “How Does Tripus Extirpation Affect Auditory sensitivity in Goldfish?” Hearing Res. 182, 119–129.

    Article  Google Scholar 

  • Ljungblad, D. K., Scoggins, P. D., and Gilmartin, W. G. (1982). “Auditory Thresholds of a Captive Eastern Pacific Bottlenosed Dolphin, (Tursiops spp.),” J. Acoust. Soc. Am. 72, 1726–1729.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D. A., Lu, Z. and Popper, A. N. (1997). “A clupeid fish can detect ultrasound,” Nature 389, 341.

    Article  CAS  Google Scholar 

  • Mann, D. A., Lu, Z., Hastings, M. C., and Popper, A. N. (1998). “Detection of ultrasonic tones and simulated dophin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima),” J. Acoust. Soc. Am. 104, 562–568.

    Article  PubMed  CAS  Google Scholar 

  • McCauley, R. D., Fewtrell, J., and Popper, A. N. (2003). “High intensity anthropogenic sound damages fish ears,” J. Acoust. Soc. Am. 113, 638–642.

    Article  PubMed  Google Scholar 

  • McCormick, J. M. and Salvadori, M. G. (1964). Numerical Methods in FORTRAN (Prentice-Hall, Englewood Cliffs, NJ).

    Google Scholar 

  • Mills, A. W. (1958). “On the Minimum Audible Angle,” J. Acoust. Soc. Am. 30, 237–246.

    Article  Google Scholar 

  • Meredith, G. E. (1984). “Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (cichlidae): a nonelectroreceptive teleost,” J. Comp. Neurol. 228, 342–358.

    Article  PubMed  CAS  Google Scholar 

  • Mills, A. W. (1972). “Auditory Localization,” in Foundations of Modern Auditory Theory, Vol 2, J.V. Tobias, eds. (Academic Press, New York), pp. 303–348.

    Google Scholar 

  • Mohl, B. (1964). “Preliminary Studies on Hearing in Seals,” Vidensk. Medd. Cansk Naturh. Foren. 127, 283–294.

    Google Scholar 

  • Mohl, B. (1967). “Frequency Discrimination in the Common Seal,” in Underwater Acoustics, V. A. Albers, ed. (Plenum Press, New York), pp. 43–45.

    Google Scholar 

  • Mohl, B. (1968). “Auditory Sensitive of the Common Seal in Air and Water,” J. Aud. Res. 8, 27–38.

    Google Scholar 

  • Moore, P. W. B. (1975). “Underwater Localization of Click and Pulsed Pure-tone Signals by the California Sea Lion (Zalophus californianus),” J. Acoust. Soc. Am. 57, 406–449.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P. W. B. and Au, W. W. L. (1975). “Underwater Localization of Pulsed Pure Tonesby the California Sea Lion (Zalophus californianus),” J. Acoust. Soc. Am. 58, 721–727.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P. W. B. and Schusterman, R. J. (1976). “Discrimination of Pure-tone Intensities by the California Sea Lion,” J. Acoust. Soc. Am. 60, 1405–1407.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P. W. B. and Schusterman, R. J. (1987). “Audiometric Assessment of Northern Fur Seals (Callorhinus ursinus),” Mar. Mamm. Sci. 3, 31–53.

    Article  Google Scholar 

  • Münz, H. (1979). “Morphology and innervation of the lateral line system in Sarotherodeon niloticus,” Zoomorphologie 93, 73–86.

    Article  Google Scholar 

  • Myrberg, A. A., Jr., Banner, A., and Richard, J. D. (1969). “Shark attraction using a video-acoustic system,” Mar. Biol. 2, 264–276.

    Article  Google Scholar 

  • Nachtigall, P. E., Pawloski, J., and Au, W. W. L. (2003). “Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus),” J. Acoust. Soc., Am. 113, 3245–3429.

    Article  Google Scholar 

  • Nachtigall, P. E., Au. W. W. L., Pawloski, J. L., and Moore, P. W. B. (1995). “Risso’s Dolphin (Grampus griseus) Hearing Thresholds in Kaneohe Bay, Hawaii,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De-Spiel, Woerden, The Netherlands), pp. 49–53.

    Google Scholar 

  • Offutt, G. C. (1968). “Auditory response in the goldfish,” J. Aud. Res. 8, 391–400.

    Google Scholar 

  • Paterson, R. D. and Moore, B. C. J. (1986). “Auditory Filters and Excitation Patterns as Representations of Frequency Resolution,” in Frequency Selectivity in Hearing, B. C. J. Moore, ed. (Academic Press, New York), pp. 123–177.

    Google Scholar 

  • Plump, R. and Bouman, M. A. (1959). “Relation between Hearing Threshold and Duration for Tone Pulses,” J. Acoust. Soc. Am. 31, 749–758.

    Article  Google Scholar 

  • Poggendorf, D. (1952). “Die absoluten Hörschwellen des Zwergweises (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparatus der Ostariophysan,” Z. Vergl. Physiol. 34, 222–257.

    Article  Google Scholar 

  • Popper, A. N. and Clarke, N. L. (1976). “The auditory system of goldfish (Carassius auratus): effects of intense acoustic stimulation,” Comp. Biochem. Physiol. 53A, 11–18.

    Article  Google Scholar 

  • Popper, A. N. and Fay, R. R. (1993). “Sound Detection and Processing by Fish: Critical Review and Major Research Questions,” Brain Behav. Evol. 41, 14–38.

    Article  PubMed  CAS  Google Scholar 

  • Popper, A. N., Smith, M. E., Cott, P. A, Hanna, B. W., MacGillivray, A. O., Austin, M. E., and Mann, D. A. (2005). “Effects of exposure to seismic airgun use on hearing of three fish species,” J. Acoust. Soc. Am. 117, 3958–3971.

    Article  PubMed  Google Scholar 

  • Popper, A. N., Halverson, M. B., Kane, E., Miller, D. D., Smith, M. E., Stein, P., and Wysocki, L. E. (2007). “The effects of high-intensity, low-frequency active sonar on rainbow trout,” J. Acoust. Soc. Am. 122, 623–635.

    Article  PubMed  Google Scholar 

  • Renaud, D. L. and Popper, A. N. (1978). “Sound Localization by the Bottlenose Porpoise (Tursiops truncates),” J. Exp. Biol. 63, 569–585.

    Google Scholar 

  • Repenning, C. A. (1972). “Underwater hearing in seals: Functional morphology,” in Functional Anatomy of Marine Mammals Vol. 1, R. J. Harrison, ed. Academic, London, pp. 307–331.

    Google Scholar 

  • Reysenbach de Haan, F. W. (1957). “Hearing in Whales,” Acta Oto-Laryngol. Suppl. 134, 1–114.

    Google Scholar 

  • Richard, J. D. (1968). “Fish attraction with pulsed low-frequency sound,” J. Fish. Res. Board Can. 26, 1441–1452.

    Article  Google Scholar 

  • Ridgway, S. H., Carder, D. A., Kamolnick, T., Smith, R. R., Schlundt, C. E., and Elsberry, W. R. (2001). “Hearing and Whistling in the Deep Sea: Depth Influences Whistle Spectra but Does not Attenuate Hearing by While Whales (Delphinapterus leucas), (Odontoceti, Cetacea).

    Google Scholar 

  • Sand, O. (1974). “Directional sensitivity of microphonic potentials from the perch ear,” J. Exp. Biol. 60, 881–899.

    PubMed  CAS  Google Scholar 

  • Sauerland, M. and Dehnhardt, G. (1998). “Underwater Audiogram of a Tucuxi (Sotalia fluviatilis guianensis), J. Acoust. Soc. Am. 103, 1199–1204.

    Article  PubMed  CAS  Google Scholar 

  • Schaft, B. (1970). “Critical bands,” in Foundation of Modern Auditory Theory. Vol 1, J.V. Tobias, ed. (Academic Press, NY.), pp. 159–202.

    Google Scholar 

  • Schellart, N. A. M. and de Munck, J. C. (1987). “A model for directional and distance hearing in swimbladder-bearing fish based on the displacement orbits of the hair cells,” J. Acoust. Soc. Am. 82, 822–829.

    Article  PubMed  CAS  Google Scholar 

  • Schlund, C. E., Finneran, J. J., Carder, D. A., and Ridgway, S. H. (2000). “Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones,” J. Acoust. Soc. Am. 107, 3496–3408.

    Article  Google Scholar 

  • Scholik, A. R. and Yan, H. Y. (2001). “Effects of underwater noise on auditory sensitivity of a cyprinid fish,” Hear. Res. 152, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Scholik, A. R. and Yan, H. Y. (2002). “The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis marochirus,” Comp. Biochem. Physiol. A 133, 43–52.

    Article  Google Scholar 

  • Schuijf, A. and Buwalda, R. J. A. (1980). “Underwater localization – a major problem in fish acoustics,” in Comparative Studies of Hearing in Vertebrates, A. N. Popper and R. R. Fay, eds. (Springer-Verlag, New York), pp. 43–77.

    Chapter  Google Scholar 

  • Schusterman, R. J., Balliet, R. F., and Nixon, J. (1972). “Underwater Audiogram of the California Sea Lion by the Conditional Vocalization Technique,” J. Exp. Anal. Behav. 17, 339–350.

    Article  PubMed  CAS  Google Scholar 

  • Schusterman, R. J. (1974). “Auditory Sensitivity of the California Sea Lion to Airborne Sound,” J. Acoust. Soc. Am. 56, 1248–1251.

    Article  PubMed  CAS  Google Scholar 

  • Schusterman, R. J. and Moore, P. W. B. (1978). “The Upper Limit of Underwater Auditory Frequency Discrimination in the California Sea Lion,” J. Acoust. Soc. Am. 63, 1591–1595.

    Article  PubMed  CAS  Google Scholar 

  • Schusterman, R. J. and Moore, P. W. B. (1978). “Underwater Audiogram of the Northern Fur Seal (Callorhinus ursinus),” J. Acoust. Soc. Am. 64, S87 (Abstract).

    Article  Google Scholar 

  • Schusterman, R. J. and Moore, P. W. B. (1980). “Auditory Sensitivity of Northern Fur Seals (Callorhinus ursinus) and a California Sea Lion (Zalophus californianus )to Airborne Sound,” J. Acoust. Soc. Am. 68, S6 (Abstract).

    Article  Google Scholar 

  • Sivian, L. J. and White, S. D. (1933). “On Minimum Audible Sound Fields,” J. Acoust. Soc. Am. 4, 288–321.

    Article  Google Scholar 

  • Smith, M. E., Kane, A. S. and Popper, A. N. (2004). “Noise-induced stress response and hearing loss in goldfish (Carassius auratus),” J. Exp. Biol. 207, 427–435.

    Article  PubMed  Google Scholar 

  • Southall, B. L., Schusterman, R. J., and Kastak, D. (2000). “Masking in Three Pinnipeds: Underwater, Low-frequency Critical Ratios,” J. Acoust. Soc. Am. 108, 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  • Southall, B. L., Schusterman, R. J., and Kastak, D. (2003). “Auditory Masking in Three Pinnipeds: Aerial Critical Ratios and Direct Critical Bandwidth Measurements,” J. Acoust. Soc. Am. 114, 1660–1666.

    Article  PubMed  Google Scholar 

  • Terhune, J. M. and Ronald, K. (1971). “The Harp Seal, Pagophilus groenlandicus (Erxleben, 1771), X. The Air Audiogram, Can. J. Zool. 49, 385–390.

    CAS  Google Scholar 

  • Terhune, J. M. and Ronald, K. (1972). “The Harp Seal, Pagophilus groenlandicus (Erxleben, 1771), III. The Underwater Audiogram, Can. J. Zool. 50, 385–390.

    Article  Google Scholar 

  • Terhune, J. M. (1974). “Directional Hearing of a Harbor Seal in Air and Water,” J. Acoust. Soc. Am. 56, 1862–1865.

    Article  PubMed  CAS  Google Scholar 

  • Terhune, J. M. and Ronald, K. (1975). “Underwater Hearing Sensitivity of Two Ringed Seals (Pusa hispida),” Can. J. Zool. 50, 565–569.

    Article  Google Scholar 

  • Terhune, J. M. and Ronald, K. (1976). “The Upper Frequency Limit of Ringed Seal Hearing,” Can. J. Zool. 54, 1226–1229.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J., Chun, N., Au, W., and Pugh, K. (1988). “Underwater Audiogram of a False Killer Whale (Pseudorca leucas),” J. Acoust. Soc. Am. 84, 936–940.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R. K. R. and Herman, L. M. (1975). “Underwater Frequency Discrimination in the Bottlenose Dolphin (1-140 kHz) and the Human (1-8 kHz),” J. Acoust. Soc. Am. 57, 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, S. D. and Terhune, J. M. (1990). “White noise and pure tone masking of pure tone thresholds of a harbor seal listening in air and underwater. (Phoca vitulina),” Can. J. Zool. 68, 2090–2097.

    Article  Google Scholar 

  • Wang, D., Wang, K., Xiao, Y., and Sheng, G. (1992). “Auditory Sensitivity of a Chinese River Dolphin (Lipotes vexillifer), in Marine Mammal Sensory Systems, J. A. Thomas, R. A. Kastelein, and A. Ya. Supin, eds. (Plenum Press, New York), pp 213–221.

    Chapter  Google Scholar 

  • Wengel, R. L. and Lane, C. E. (1924). “The Auditory Masking of One Pure Tone by Another and its Probable Relation to the Dynamics of the Inner Ear,” Phys. Rev. 23, 266–285.

    Article  Google Scholar 

  • White, M. J. Jr., Norris, J., Ljungblad, D., Baron, K., and di Sciara, G. (1978). “Auditory Thresholds of Two Beluga Whales (Delphinapterus leucas),” HSWRI Tech. Rep., No. 78-109 (Hubbs Marine Research Institute, 1700 S. Shores Road, San Diego, CA).

    Google Scholar 

  • Yan, H. Y., Fine, M. L., Horn, N. S., and Colón, W. E. (2000). “Variability in the role of the gasbladder in fish audition,” J. Comp. Physiol. A 186, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Zaytseva, K. A., Akopian, A. I., and Morozov, V. P. (1975). “Noise Resistance of the Dolphin Auditory Analyzer as a Function of Noise Direction,” BioFizika 20, 519–521.

    Google Scholar 

  • Zwislocki, J. (1960). “Theory of Temporal Auditory Summation,” J. Acoust. Soc. Am. 32, 1046–1060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Au, W.W., Hastings, M.C. (2008). Hearing in Marine Animals. In: Principles of Marine Bioacoustics. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78365-9_9

Download citation

Publish with us

Policies and ethics