Advertisement

Hearing in Marine Animals

  • W.L. Whitlow Au
  • Mardi C. Hastings
Chapter
Part of the Modern Acoustics and Signal Processing book series (MASP)

Part I consisted mainly of the necessary background materials that are needed tools in order to make bioacoustic measurements, perform psychoacoustic experiments, and discuss topics in marine bioacoustics. In the second part of this book, we will examine the marine animals themselves and discuss hearing and sound production mechanisms, characteristics and function of sounds.

Hearing in Dolphins

All of our knowledge of hearing in cetaceans comes from studies with small odontocetes. The most studied dolphin is the Atlantic bottlenose dolphin, Tursiops truncatus. This species also happens to be the most common species in oceanariums, aquariums, and theme parks. Despite the amount of research performed with Tursiops, there are still many gaps in our knowledge of auditory processes. Much of the auditory research with dolphins has followed along the lines of human auditory research, but at a much slower pace and with considerably less intensity.

Hearing Sensitivity

Sensitivity to Continuous...

Keywords

Sound Pressure Level Bottlenose Dolphin Beam Pattern Interaural Time Difference Ringed Seal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersen, S. (1970a). “Auditory Sensitivity of the Harbor Porpoise (Phocoena phocoena),” Invest. Cetacea 2, 255–259.Google Scholar
  2. Andersen, S. (1970b). “Directional Hearing in the Harbor Porpoise (Phocoena phocoena),” Invest. Cetacea 2, 260–263.Google Scholar
  3. Astrup, J. and Møhl, B. (1993). “Detection of intense ultrasound by the cod Gadus morhua,” J. Exp. Biol. 182, 71–80.Google Scholar
  4. Au, W. W. L. and Moore, P. W. B. (1984). “Receiving Beam Patterns and Directivity Indices of the Atlantic Bottlenose Dolphin (Tursiops truncates),” J. Acoust. Soc. Am. 75, 255–262.PubMedCrossRefGoogle Scholar
  5. Au, W. W. L. and Moore, P. W. B. (1990). “Critical Ratio and Critical Bandwidth for the Atlantic Bottlenose Dolphin,” J. Acoust. Soc. Am. 88, 1635–1638.PubMedCrossRefGoogle Scholar
  6. Bain, D. and Dallheim, M. E. (1992). Personal Communications.Google Scholar
  7. Blodgett, H. C., Jeffress, L. A., and Taylor, R. W. (1958). “Relation of masked threshold to signal-duration for various interaural phase-combinations,” Am. J. Psychol. 71, 283–290.PubMedCrossRefGoogle Scholar
  8. Bobber, R. J. (1970). Underwater Electroacoustic Measurements (U.S. Govern. Printing Office, Washington, DC).Google Scholar
  9. Braun, C. B., Coombs, S., and Fay, R. R. (2002). “Multisensory interactions within the octavolateralis systems: What is the nature of multisensory integration?” Brain, Behav. and Evol. 59, 162–176.CrossRefGoogle Scholar
  10. Chapman, C. J. and Sand, O. (1974). “Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae),” Comp. Biochem. Physiol. 47A, 371–385.CrossRefGoogle Scholar
  11. Chapman, C. J. and Johnstone, A. D. F. (1974). “Some auditory discrimination experiments on marine fish,” J. Exp. Biol. 61, 521–528.PubMedGoogle Scholar
  12. de Munck, J. C. and Schellart, N. A. M. (1987). “A model for the nearfield acoustics of the fish swimbladder and its relevance for directional hearing,” J. Acoust. Soc. Am. 81, 556–560.PubMedCrossRefGoogle Scholar
  13. Dudok van Heel, W. H. (1962). “Sound and Cetacea,” Nether. J. Sea. Res. 1, 407–507.CrossRefGoogle Scholar
  14. Enger, P. S. (1966). “Acoustic threshold in goldfish and its relation to the sound source distance,” Comp. Biochem. Physiol. 18, 859–868.PubMedCrossRefGoogle Scholar
  15. Enger, P. S. (1981). “Frequency discrimination in teleosts – central or peripheral?” in Hearing and Sound Communication in Fishes, W. N. Tavolga, A. N. Popper and R. R. Fay, eds. (Springer-Verlag, New York), pp. 243–255.Google Scholar
  16. Enger, P. S., Hawkins, A. D., Sand, O. and Chapman, C. J. (1973). “Directional sensitivity of saccular microphonic potentials in the haddock,” J. Exp. Biol. 59, 425–433.PubMedGoogle Scholar
  17. Fay, R. R. (1969). “Behavioral audiogram for the goldfish,” J. Aud. Res. 9, 112–121.Google Scholar
  18. Fay, R. R. (1974). “Auditory frequency discrimination in vertebrates,” J. Acoust. Soc. Am. 56, 206–209.PubMedCrossRefGoogle Scholar
  19. Fay, R. R. (1978). “Coding of information in single auditory-nerve fibers of the goldfish,” J. Acoust. Soc. Am. 63, 136–146.PubMedCrossRefGoogle Scholar
  20. Fay, R. R. (1984). “The goldfish ear codes the axis of acoustic particle motion in three dimensions,” Science 225, 951–954.PubMedCrossRefGoogle Scholar
  21. Fay, R. R. (1988). Hearing in Vertebrates: A Psychophysics Databook (Hill-Fay Assoc., Winnetka, Illinois).Google Scholar
  22. Fay, R. R. and Edds-Walton, P. L. (1997). “Directional response properties of saccular afferents of the toadfish, Opsanus tau,” Hear. Res. 111, 1–21.PubMedCrossRefGoogle Scholar
  23. Fay, R. R. and Patricoski, M. L. (1980). “Sensory mechanisms for low frequency vibration detection in fishes,” in Abnormal Animal Behavior Prior to Earthquakes, II, R. Buskirk, ed. (U.S. Geological Survey Open File Report 80–453), pp. 63–91.Google Scholar
  24. Fay, R. R. and Popper, A. N. (eds.). (1999). Comparative Hearing: Fish and Amphibians, Spring Handbook of Auditory Research, Vol. 11, (Springer New York), 438 p.Google Scholar
  25. Finnerana, J. J., Schlundt, C. E., Carder, D. A., Clark, J. A., and Young, J. A., Gaspin, J. B., and Ridgway, S. H. (2000). “Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions,” J. Acoust. Soc. Am. 108, 417–431.CrossRefGoogle Scholar
  26. Fletcher, H. (1940). “Auditory Patterns,” Rev. Mod. Phys. 12, 47–65.CrossRefGoogle Scholar
  27. Forsythe, F. E., Malcolm, M. A., and Moler, C. B. (1977). Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, NJ).Google Scholar
  28. French, N. R. and Steinberg, J. C. (1947). “Factors Governing the Intelligibility of Speech Sound,” J. Acoust. Soc. Am. 19, 90–119.CrossRefGoogle Scholar
  29. Gentry, R. L. (1967). “Underwater Auditory Localization in the California Sea Lion (Zalophus californianus),” J. Aud. Res. 7, 187–193.Google Scholar
  30. Gerstein, E. R., Gerstein, L. A., Forsythe, S. E., and Blue, J. E. (1993). “Underwater Audiogram of a West Indian Manatee (Trichecus manatus),” Proc. Tenth Bien Conf. Biol. Mar. Mamm., (Galveston, Texas), P. 53 (A).Google Scholar
  31. Gerstein, E. R., Gerstein, L. A., Forsythe, S. E., and Blue, J. E. (1999). “The Underwater Audiogram of the West Indian Manatee (Trichechus manatus),” J. Acoust. Soc. Am. 105, 3575–3583.PubMedCrossRefGoogle Scholar
  32. Hall, J. D. and Johnson, C. S. (1971). “Auditory Thresholds of a Killer Whale,” J. Acoust. Soc. Am. 51, 515–517.CrossRefGoogle Scholar
  33. Hamilton, P. M. (1957). “Noise masked thresholds as a function of tonal duration and masking band width,” J. Acoust. Soc. Am. 29, 506–511.CrossRefGoogle Scholar
  34. Hastings, M. C. (1995). “Physical effects of noise on fishes,” Proceedings of INTER-NOISE 95, The International Congress on Noise Control Engineering, Vol. II, pp. 979–984.Google Scholar
  35. Hastings, M. C., Popper, A. N., Finneran, J. J., and Lanford, P. J. (1996). “Effect of low frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus,” J. Acoust. Soc. Am. 99, 1759–1766.PubMedCrossRefGoogle Scholar
  36. Hawkins, A. D. (1981). “The hearing abilities of fish,” in Hearing and Sound Communication in Fishes, W. N. Tavolga, A. N. Popper and R. R. Fay, eds. (Springer-Verlag, New York), pp. 109–137.Google Scholar
  37. Hawkins, J. E. and Stevens, S. S. (1950). “The Masking of Pure Tones and Speech by White Noise,” J. Acoust. Soc. Am. 22, 6–13.CrossRefGoogle Scholar
  38. Heffner, R. S. and Heffner, H. E. (1992). “Hearing in Large Mammals: Sound-localization Acuity in Cattle (Bos Taurus) and Goats (Capra hircus),” J. Comp. Psychol. 106, 107–113.PubMedCrossRefGoogle Scholar
  39. Herman, L. M. and Arbeit, W. R. (1972 ). “Frequency Difference Limens in the Bottlenose Dolphin: 1-70 kHz,” J. Aud. Res. 12, 109–120.Google Scholar
  40. Higgs, D. M., Plachta, D. T. T., Rollo, A. K., Singheiser, M., Hastings, M. C., and Popper, A. N. (2004). “Development of ultrasound detection in American Shad (Alosa sapidissima),” J. Exp. Biol. 207, 155–163.PubMedCrossRefGoogle Scholar
  41. Holt, M. M., Schusterman, R. J., Southall, B. L., and Kastak, D. (2004). “Localization of aerial Broadband Noise by Pinnipeds,” J. Acoust. Soc. Am. 115, 2339–2345.PubMedCrossRefGoogle Scholar
  42. Hughes, J. W. (1946). “The Threshold of Audition for Short Periods of Stimulation,” Proc. Roy. Soc. (London) b133, 486–490.Google Scholar
  43. Jacobs, D. W. (1972). “Auditory Frequency Discrimination in the Atlantic Bottlenose Dolphin (Tursiops truncates) Montagu: A Preliminary Report,” J. Acoust. Soc. Am. 53, 696–698.CrossRefGoogle Scholar
  44. Jacobs, D. W. and Hall, J. D. (1972). “Auditory Thresholds of a Fresh Water Dolphin (Inia geoffrensis) Blainville,” J. Acoust. Soc. Am. 51, 530–533.CrossRefGoogle Scholar
  45. Johnson, S. C. (1967). “Sound Detection Thresholds in Marine Mammals,” in Marine Bio-Acoustics, W. Talvoga, ed. (Pergamon Press, New York), pp. 247–260.Google Scholar
  46. Johnson, S. C. (1968a). “Relation Between Absolute Threshold and Duration of Tone Pulse in the Bottlenosed Porpoise,” J. Acoust. Soc. Am. 43, 757–763.CrossRefGoogle Scholar
  47. Johnson, S. C. (1968b). “Masked Tonal Thresholds in the Bottlenosed Porpoise,” J. Acoust. Soc. Am. 44, 965–967.CrossRefGoogle Scholar
  48. Johnson, S. C. (1971). “Auditory Masking of One Pure Tone by Another in the Bottlenose Porpoise,” J. Acoust. Soc. Am. 49, 1317–1318.CrossRefGoogle Scholar
  49. Johnson, S. C., McManus, M. W., and Skaar, D. (1989). “Masked Tonal Thresholds in the Belukha Whale,” J. Acoust. Soc. Am. 85, 2651–2654.PubMedCrossRefGoogle Scholar
  50. Kastak, D. A. (1996). “Comparative Aspects of Hearing in Pinnipeds,” Ph.D. dissertation, U. C. Santa Cruz.Google Scholar
  51. Kastak, D. and Schusterman, R. J. (2002). “Changes in auditory sensitivity with depth in a free-diving California se lion (Salophus californianus),” J. Acoust. Soc. Am. 112, 329–333.PubMedCrossRefGoogle Scholar
  52. Ketten, D. R. (2000). “Cetacean Ears,” in Hearing by Whales and Dolphins, W. W. L. Au, A. N. Popper, and R. R. Fay, eds. (Springer-Verlag, New York), pp. 43–108.CrossRefGoogle Scholar
  53. Kleerekoper, H. and Roggenkamp, P. A. (1959). “An experimental Study on the Effect of the Swimbladder on Hearing Sensitivity in Ameiurus nebulosus nebulosus (LeSueur),” Can. J. Zool. 37, 1–8.Google Scholar
  54. Ladich, F. and Wysocki, L. E. (2003). “How Does Tripus Extirpation Affect Auditory sensitivity in Goldfish?” Hearing Res. 182, 119–129.CrossRefGoogle Scholar
  55. Ljungblad, D. K., Scoggins, P. D., and Gilmartin, W. G. (1982). “Auditory Thresholds of a Captive Eastern Pacific Bottlenosed Dolphin, (Tursiops spp.),” J. Acoust. Soc. Am. 72, 1726–1729.PubMedCrossRefGoogle Scholar
  56. Mann, D. A., Lu, Z. and Popper, A. N. (1997). “A clupeid fish can detect ultrasound,” Nature 389, 341.CrossRefGoogle Scholar
  57. Mann, D. A., Lu, Z., Hastings, M. C., and Popper, A. N. (1998). “Detection of ultrasonic tones and simulated dophin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima),” J. Acoust. Soc. Am. 104, 562–568.PubMedCrossRefGoogle Scholar
  58. McCauley, R. D., Fewtrell, J., and Popper, A. N. (2003). “High intensity anthropogenic sound damages fish ears,” J. Acoust. Soc. Am. 113, 638–642.PubMedCrossRefGoogle Scholar
  59. McCormick, J. M. and Salvadori, M. G. (1964). Numerical Methods in FORTRAN (Prentice-Hall, Englewood Cliffs, NJ).Google Scholar
  60. Mills, A. W. (1958). “On the Minimum Audible Angle,” J. Acoust. Soc. Am. 30, 237–246.CrossRefGoogle Scholar
  61. Meredith, G. E. (1984). “Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (cichlidae): a nonelectroreceptive teleost,” J. Comp. Neurol. 228, 342–358.PubMedCrossRefGoogle Scholar
  62. Mills, A. W. (1972). “Auditory Localization,” in Foundations of Modern Auditory Theory, Vol 2, J.V. Tobias, eds. (Academic Press, New York), pp. 303–348.Google Scholar
  63. Mohl, B. (1964). “Preliminary Studies on Hearing in Seals,” Vidensk. Medd. Cansk Naturh. Foren. 127, 283–294.Google Scholar
  64. Mohl, B. (1967). “Frequency Discrimination in the Common Seal,” in Underwater Acoustics, V. A. Albers, ed. (Plenum Press, New York), pp. 43–45.Google Scholar
  65. Mohl, B. (1968). “Auditory Sensitive of the Common Seal in Air and Water,” J. Aud. Res. 8, 27–38.Google Scholar
  66. Moore, P. W. B. (1975). “Underwater Localization of Click and Pulsed Pure-tone Signals by the California Sea Lion (Zalophus californianus),” J. Acoust. Soc. Am. 57, 406–449.PubMedCrossRefGoogle Scholar
  67. Moore, P. W. B. and Au, W. W. L. (1975). “Underwater Localization of Pulsed Pure Tonesby the California Sea Lion (Zalophus californianus),” J. Acoust. Soc. Am. 58, 721–727.PubMedCrossRefGoogle Scholar
  68. Moore, P. W. B. and Schusterman, R. J. (1976). “Discrimination of Pure-tone Intensities by the California Sea Lion,” J. Acoust. Soc. Am. 60, 1405–1407.PubMedCrossRefGoogle Scholar
  69. Moore, P. W. B. and Schusterman, R. J. (1987). “Audiometric Assessment of Northern Fur Seals (Callorhinus ursinus),” Mar. Mamm. Sci. 3, 31–53.CrossRefGoogle Scholar
  70. Münz, H. (1979). “Morphology and innervation of the lateral line system in Sarotherodeon niloticus,” Zoomorphologie 93, 73–86.CrossRefGoogle Scholar
  71. Myrberg, A. A., Jr., Banner, A., and Richard, J. D. (1969). “Shark attraction using a video-acoustic system,” Mar. Biol. 2, 264–276.CrossRefGoogle Scholar
  72. Nachtigall, P. E., Pawloski, J., and Au, W. W. L. (2003). “Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus),” J. Acoust. Soc., Am. 113, 3245–3429.CrossRefGoogle Scholar
  73. Nachtigall, P. E., Au. W. W. L., Pawloski, J. L., and Moore, P. W. B. (1995). “Risso’s Dolphin (Grampus griseus) Hearing Thresholds in Kaneohe Bay, Hawaii,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De-Spiel, Woerden, The Netherlands), pp. 49–53.Google Scholar
  74. Offutt, G. C. (1968). “Auditory response in the goldfish,” J. Aud. Res. 8, 391–400.Google Scholar
  75. Paterson, R. D. and Moore, B. C. J. (1986). “Auditory Filters and Excitation Patterns as Representations of Frequency Resolution,” in Frequency Selectivity in Hearing, B. C. J. Moore, ed. (Academic Press, New York), pp. 123–177.Google Scholar
  76. Plump, R. and Bouman, M. A. (1959). “Relation between Hearing Threshold and Duration for Tone Pulses,” J. Acoust. Soc. Am. 31, 749–758.CrossRefGoogle Scholar
  77. Poggendorf, D. (1952). “Die absoluten Hörschwellen des Zwergweises (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparatus der Ostariophysan,” Z. Vergl. Physiol. 34, 222–257.CrossRefGoogle Scholar
  78. Popper, A. N. and Clarke, N. L. (1976). “The auditory system of goldfish (Carassius auratus): effects of intense acoustic stimulation,” Comp. Biochem. Physiol. 53A, 11–18.CrossRefGoogle Scholar
  79. Popper, A. N. and Fay, R. R. (1993). “Sound Detection and Processing by Fish: Critical Review and Major Research Questions,” Brain Behav. Evol. 41, 14–38.PubMedCrossRefGoogle Scholar
  80. Popper, A. N., Smith, M. E., Cott, P. A, Hanna, B. W., MacGillivray, A. O., Austin, M. E., and Mann, D. A. (2005). “Effects of exposure to seismic airgun use on hearing of three fish species,” J. Acoust. Soc. Am. 117, 3958–3971.PubMedCrossRefGoogle Scholar
  81. Popper, A. N., Halverson, M. B., Kane, E., Miller, D. D., Smith, M. E., Stein, P., and Wysocki, L. E. (2007). “The effects of high-intensity, low-frequency active sonar on rainbow trout,” J. Acoust. Soc. Am. 122, 623–635.PubMedCrossRefGoogle Scholar
  82. Renaud, D. L. and Popper, A. N. (1978). “Sound Localization by the Bottlenose Porpoise (Tursiops truncates),” J. Exp. Biol. 63, 569–585.Google Scholar
  83. Repenning, C. A. (1972). “Underwater hearing in seals: Functional morphology,” in Functional Anatomy of Marine Mammals Vol. 1, R. J. Harrison, ed. Academic, London, pp. 307–331.Google Scholar
  84. Reysenbach de Haan, F. W. (1957). “Hearing in Whales,” Acta Oto-Laryngol. Suppl. 134, 1–114.Google Scholar
  85. Richard, J. D. (1968). “Fish attraction with pulsed low-frequency sound,” J. Fish. Res. Board Can. 26, 1441–1452.CrossRefGoogle Scholar
  86. Ridgway, S. H., Carder, D. A., Kamolnick, T., Smith, R. R., Schlundt, C. E., and Elsberry, W. R. (2001). “Hearing and Whistling in the Deep Sea: Depth Influences Whistle Spectra but Does not Attenuate Hearing by While Whales (Delphinapterus leucas), (Odontoceti, Cetacea).Google Scholar
  87. Sand, O. (1974). “Directional sensitivity of microphonic potentials from the perch ear,” J. Exp. Biol. 60, 881–899.PubMedGoogle Scholar
  88. Sauerland, M. and Dehnhardt, G. (1998). “Underwater Audiogram of a Tucuxi (Sotalia fluviatilis guianensis), J. Acoust. Soc. Am. 103, 1199–1204.PubMedCrossRefGoogle Scholar
  89. Schaft, B. (1970). “Critical bands,” in Foundation of Modern Auditory Theory. Vol 1, J.V. Tobias, ed. (Academic Press, NY.), pp. 159–202.Google Scholar
  90. Schellart, N. A. M. and de Munck, J. C. (1987). “A model for directional and distance hearing in swimbladder-bearing fish based on the displacement orbits of the hair cells,” J. Acoust. Soc. Am. 82, 822–829.PubMedCrossRefGoogle Scholar
  91. Schlund, C. E., Finneran, J. J., Carder, D. A., and Ridgway, S. H. (2000). “Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones,” J. Acoust. Soc. Am. 107, 3496–3408.CrossRefGoogle Scholar
  92. Scholik, A. R. and Yan, H. Y. (2001). “Effects of underwater noise on auditory sensitivity of a cyprinid fish,” Hear. Res. 152, 17–24.PubMedCrossRefGoogle Scholar
  93. Scholik, A. R. and Yan, H. Y. (2002). “The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis marochirus,” Comp. Biochem. Physiol. A 133, 43–52.CrossRefGoogle Scholar
  94. Schuijf, A. and Buwalda, R. J. A. (1980). “Underwater localization – a major problem in fish acoustics,” in Comparative Studies of Hearing in Vertebrates, A. N. Popper and R. R. Fay, eds. (Springer-Verlag, New York), pp. 43–77.CrossRefGoogle Scholar
  95. Schusterman, R. J., Balliet, R. F., and Nixon, J. (1972). “Underwater Audiogram of the California Sea Lion by the Conditional Vocalization Technique,” J. Exp. Anal. Behav. 17, 339–350.PubMedCrossRefGoogle Scholar
  96. Schusterman, R. J. (1974). “Auditory Sensitivity of the California Sea Lion to Airborne Sound,” J. Acoust. Soc. Am. 56, 1248–1251.PubMedCrossRefGoogle Scholar
  97. Schusterman, R. J. and Moore, P. W. B. (1978). “The Upper Limit of Underwater Auditory Frequency Discrimination in the California Sea Lion,” J. Acoust. Soc. Am. 63, 1591–1595.PubMedCrossRefGoogle Scholar
  98. Schusterman, R. J. and Moore, P. W. B. (1978). “Underwater Audiogram of the Northern Fur Seal (Callorhinus ursinus),” J. Acoust. Soc. Am. 64, S87 (Abstract).CrossRefGoogle Scholar
  99. Schusterman, R. J. and Moore, P. W. B. (1980). “Auditory Sensitivity of Northern Fur Seals (Callorhinus ursinus) and a California Sea Lion (Zalophus californianus )to Airborne Sound,” J. Acoust. Soc. Am. 68, S6 (Abstract).CrossRefGoogle Scholar
  100. Sivian, L. J. and White, S. D. (1933). “On Minimum Audible Sound Fields,” J. Acoust. Soc. Am. 4, 288–321.CrossRefGoogle Scholar
  101. Smith, M. E., Kane, A. S. and Popper, A. N. (2004). “Noise-induced stress response and hearing loss in goldfish (Carassius auratus),” J. Exp. Biol. 207, 427–435.PubMedCrossRefGoogle Scholar
  102. Southall, B. L., Schusterman, R. J., and Kastak, D. (2000). “Masking in Three Pinnipeds: Underwater, Low-frequency Critical Ratios,” J. Acoust. Soc. Am. 108, 1322–1326.PubMedCrossRefGoogle Scholar
  103. Southall, B. L., Schusterman, R. J., and Kastak, D. (2003). “Auditory Masking in Three Pinnipeds: Aerial Critical Ratios and Direct Critical Bandwidth Measurements,” J. Acoust. Soc. Am. 114, 1660–1666.PubMedCrossRefGoogle Scholar
  104. Terhune, J. M. and Ronald, K. (1971). “The Harp Seal, Pagophilus groenlandicus (Erxleben, 1771), X. The Air Audiogram, Can. J. Zool. 49, 385–390.Google Scholar
  105. Terhune, J. M. and Ronald, K. (1972). “The Harp Seal, Pagophilus groenlandicus (Erxleben, 1771), III. The Underwater Audiogram, Can. J. Zool. 50, 385–390.CrossRefGoogle Scholar
  106. Terhune, J. M. (1974). “Directional Hearing of a Harbor Seal in Air and Water,” J. Acoust. Soc. Am. 56, 1862–1865.PubMedCrossRefGoogle Scholar
  107. Terhune, J. M. and Ronald, K. (1975). “Underwater Hearing Sensitivity of Two Ringed Seals (Pusa hispida),” Can. J. Zool. 50, 565–569.CrossRefGoogle Scholar
  108. Terhune, J. M. and Ronald, K. (1976). “The Upper Frequency Limit of Ringed Seal Hearing,” Can. J. Zool. 54, 1226–1229.PubMedCrossRefGoogle Scholar
  109. Thomas, J., Chun, N., Au, W., and Pugh, K. (1988). “Underwater Audiogram of a False Killer Whale (Pseudorca leucas),” J. Acoust. Soc. Am. 84, 936–940.PubMedCrossRefGoogle Scholar
  110. Thompson, R. K. R. and Herman, L. M. (1975). “Underwater Frequency Discrimination in the Bottlenose Dolphin (1-140 kHz) and the Human (1-8 kHz),” J. Acoust. Soc. Am. 57, 943–948.PubMedCrossRefGoogle Scholar
  111. Turnbull, S. D. and Terhune, J. M. (1990). “White noise and pure tone masking of pure tone thresholds of a harbor seal listening in air and underwater. (Phoca vitulina),” Can. J. Zool. 68, 2090–2097.CrossRefGoogle Scholar
  112. Wang, D., Wang, K., Xiao, Y., and Sheng, G. (1992). “Auditory Sensitivity of a Chinese River Dolphin (Lipotes vexillifer), in Marine Mammal Sensory Systems, J. A. Thomas, R. A. Kastelein, and A. Ya. Supin, eds. (Plenum Press, New York), pp 213–221.CrossRefGoogle Scholar
  113. Wengel, R. L. and Lane, C. E. (1924). “The Auditory Masking of One Pure Tone by Another and its Probable Relation to the Dynamics of the Inner Ear,” Phys. Rev. 23, 266–285.CrossRefGoogle Scholar
  114. White, M. J. Jr., Norris, J., Ljungblad, D., Baron, K., and di Sciara, G. (1978). “Auditory Thresholds of Two Beluga Whales (Delphinapterus leucas),” HSWRI Tech. Rep., No. 78-109 (Hubbs Marine Research Institute, 1700 S. Shores Road, San Diego, CA).Google Scholar
  115. Yan, H. Y., Fine, M. L., Horn, N. S., and Colón, W. E. (2000). “Variability in the role of the gasbladder in fish audition,” J. Comp. Physiol. A 186, 435–445.PubMedCrossRefGoogle Scholar
  116. Zaytseva, K. A., Akopian, A. I., and Morozov, V. P. (1975). “Noise Resistance of the Dolphin Auditory Analyzer as a Function of Noise Direction,” BioFizika 20, 519–521.Google Scholar
  117. Zwislocki, J. (1960). “Theory of Temporal Auditory Summation,” J. Acoust. Soc. Am. 32, 1046–1060.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • W.L. Whitlow Au
    • 1
  • Mardi C. Hastings
    • 2
  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  2. 2.Applied Research LaboratoryPenn State UniversityUSA

Personalised recommendations