Experimental Psychological and Electrophysiological Methodology

  • Whitlow W.L. Au
  • Mardi C. Hastings
Part of the Modern Acoustics and Signal Processing book series (MASP)

In the previous chapter we discussed the anatomical aspects of the ears of marine mammals and now we turn toward psychological and electrophysiological techniques to determine the characteristics and capabilities of the auditory system. We will not attempt an exhaustive treatment of psychological methodology since volumes have been written on this subject and it would be beyond the scope of this book and of our expertise. Our treatment will be specifically related to experiments with aquatic animals. Most of our knowledge on the auditory capabilities of marine mammals and fishes has come from controlled laboratory-type psychophysics and psychoacoustic experiments. Psychophysics involves psychological experiments to determine the relationship between physical stimuli and sensory response. In psychoacoustics, the stimuli are acoustic in nature and experiments in this field involved controlled behavioral testing procedures, following established psychological testing procedures to...


False Alarm Marine Mammal Acoustic Stimulus Bottlenose Dolphin Correct Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Au, W. W. L. and Snyder, K. J. (1980). “Long-Range Target Detection in Open Waters by an Echolocating Atlantic Bottlenose Dolphin (Tursiops truncatus),” J. Acoust. Soc. Am., 68, 1077–1084.CrossRefGoogle Scholar
  2. Au, W. W. L. and Turl, C. W. (1984). “Dolphin biosonar detection in clutter: variation in the payoff matrix,” J. Acoust. Soc. Am., 76, 955–957.CrossRefGoogle Scholar
  3. Bullock, T. H., Grinnell, A. D., Ikezono, E., Kameda, K., Nomoto, K., Sato, O., Suga, N., and Yanigisawa, K. (1968). “Electrophysiological studies of central auditory mechanisms in cetaceans,” Z. Vergl. Physiol. 59, 117–156.Google Scholar
  4. Chapman, C. J. and Sand, O. (1974). “Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae),” Comp. Biochem. Physiol. 47A, 371–385.CrossRefGoogle Scholar
  5. Dolphin, W. F. and Mountain, D. C. (1993). “The envelope following response (EFR) in the Mongolian gerbil to sinusoidally amplitude-modulated signals in the presence of simultaneously gated pure tones,” J. Acoust. Soc. Am. 94, 3215–3226.PubMedCrossRefGoogle Scholar
  6. Dolphin, W. F., Chertoff, M. E., and Burkard, R. F. (1994). “Comparison of the envelope following response in the Mongolian gerbil using two-tone and sinusoidally amplitude modulated tones,” J. Acoust. Soc. Am. 96, 2225–2234.PubMedCrossRefGoogle Scholar
  7. Dolphin, W. F., Au, W. W. L., Nachtigall, P. E., and Pawloski, J. (1995). “Modulation rate transfer functions to low-frequency carriers in three species of cetaceans,” J. Comp. Physiol. A. 177, 235–245.CrossRefGoogle Scholar
  8. Dolphin, W. F. (1996). “Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components,” J. Comp. Physiol. A. 179, 113–121.CrossRefGoogle Scholar
  9. Egan, J. P. (1975). Signal Detection Theory and ROC Analysis (Academic Press, New York).Google Scholar
  10. Elliot, P. B. (1964). “Table of d′.” in Signal Detection and Recognition by Human Observers, J. A. Swets, ed. (John Wiley & Sons, New York).Google Scholar
  11. Enger, P. S. (1967). “Hearing in herring,” Comp. Biochem. Physiol. 22, 527–538.Google Scholar
  12. Evans, W. E. (1967). “Discrimination of different metallic plates by an echolocating delphinid,” in Animal Sonar Systems: Biology and Bionics, R. G. Busnel, ed. (Laboratoire de Phsiologie Acoustique, Jouy-en-Josas, France), pp. 363–383.Google Scholar
  13. Evans, W. E. (1973). “Echolocation by marine delphinids and one species of freshwater dolphin,” J. Acoust. Soc. Am. 54, 191–199.CrossRefGoogle Scholar
  14. Fay, R. R. (1969). “Behavioral audiogram for the goldfish,” J. Aud. Res. 9, 112–121.Google Scholar
  15. Fay, R. R. (1978). “Coding of information in single auditory-nerve fibers of the goldfish,” J. Acoust. Soc. Am. 63, 136–146.PubMedCrossRefGoogle Scholar
  16. Fay, R. R. (1984). “The goldfish ear codes the axis of acoustic particle motion in three dimensions,” Science 225, 951–954.PubMedCrossRefGoogle Scholar
  17. Furukawa, T. and Ishii, Y. (1967). “Neurophysiological studies on hearing in goldfish,” J. Neurophysiol. 30, 1377–1403.PubMedGoogle Scholar
  18. Gescheider, G. A. (1976). Psychophysics: Method and Theory, (John Wiley & Sons, New York).Google Scholar
  19. Green, D. M. and Swets, J. A. (1966). Signal Detection Theory and Psychophysics (R. E. Krieger Publishing Co., Huntington, New York).Google Scholar
  20. Hammer, C. E., Jr. and Au, W. W. L. (1980). “Porpoise echo-recognition: an anlysis of controlling target characteristics,” J. Acoust. Soc. Am. 68, 1285–1293.CrossRefGoogle Scholar
  21. Herman, L. M. and Arbeit, W. R. (1972). “Frequency difference limens in the bottlenose dolphin 1-70 kHz,” J. Aud. Res. 12, 109–120.Google Scholar
  22. Horner, J. L., Longo, N. and Bitterman, M. E. (1961). “A shuttle-box for fish and a control circuit of general applicability,” Am. J. Psychol. 74, 114–120.PubMedCrossRefGoogle Scholar
  23. Jacobs, D. W. (1972). “Auditory freqeuncy discrimination in the Atlantic bottlenose dolphin, Tursiops truncatus Montagu: a preliminary report,” J. Acoust. Soc. Am. 53, 696–697.CrossRefGoogle Scholar
  24. Johnson, R. A., Moore, P. W. B., Stoermer, M. W., Pawloski, J. L., and Anderson, L.C. (1988). “Temporal order discrimination within the dolphin critical interval,” in Animal Sonar: Processes and Performance. P. E. Nachtigall and P. W. B. Moore, eds., Plenum Press, New York, pp. 317–321.Google Scholar
  25. Kenyon, T. N., Ladich, F., and Yan, H. Y. (1998). “A comparative study of hearing ability in fishes: the auditory brainstem response approach,” J. Comp. Physiol. A 182, 307–318.PubMedCrossRefGoogle Scholar
  26. Levitt, H. (1970). “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477.CrossRefGoogle Scholar
  27. Moore, P. W. B. (1975). “Underwater localization of click and pulsed pure-tone signals by the California sea lion (Zalophus californianus),” J. Acoust. Soc. Am. 57, 406–410.PubMedCrossRefGoogle Scholar
  28. Moushegian, G., Rupert, A. L., and Stillman, R. D. (1983). “Scalp recorded early responses in man to frequencies in the speech range,” Electroencephalogr. Clin. Nenrophysiol. 35, 665–667.Google Scholar
  29. Murchison, A. E. (1980). “Maximum detection range and range resolution in echolocating bottlenose popoises (Tursiops truncates),” in Animal Sonar Systems, R. G. Busnel and J.F. Fish, eds. Plenum Press, NY. pp. 43–70.Google Scholar
  30. Otis, L. S., Cerf, J. A., and Thomas, G. J. (1957). “Conditioned inhibition of respiration and heart rate in the goldfish,” Science 126, 263–264.PubMedCrossRefGoogle Scholar
  31. Peterson, W. W., Birdsall, T. G., and Fox, W. C. (1954). “The theory of signal detectability,” IRE PGIT 4, 171–212.Google Scholar
  32. Popov, V. V. and Supin, A. Y. (1990a). “Electrphysiological studies of hearing in some cetaceans and a manatee,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 405–415.Google Scholar
  33. Popov, V. V. and Supin, A. Y. (1990b). “Localization of the acoustic window at the dolphin’s head,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 417–426.Google Scholar
  34. Popov, V. V., Supin, A. Y., and Klishin, V. O. (1995). “Frequency tuning curves of the dolphin’s hearing: Envelope-following response study,” J. Comp. Physiol. A 178, 571–577.Google Scholar
  35. Ramcharitar, J. U., Higgs, D. M., and Popper, A. N. (2006). “Audition in sciaenid fishes with different swim bladder-inner ear configurations,” J. Acoust. Soc. Am. 119, 439–443.PubMedCrossRefGoogle Scholar
  36. Renaud, D. L. and Popper, A. N. (1975). “Sound localization by the bottlenose porpoise Tursiops truncates,” J. Exp. Biol. 63, 569–585.PubMedGoogle Scholar
  37. Rickards, F. W. and Clark, G. M. (1984). “Steady state evoked potentials to amplitude-modulated tones,” in Evoked PotentialsII , R. H. Nodar and C. Barber, eds. Butterworth, Boston. pp. 163–168.Google Scholar
  38. Ridgway, S. H. (1980). “Electrophysiological experiments on hearing in odontocetes,” in Animal Sonar, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum, New York), pp. 483–493.Google Scholar
  39. Ridgway, S. H. (1983). “Dolphin hearing and sound production in health and illness,” in H earing and Other Senses: Presentations in Honor of E. G. Wever , R. R. Fay and G. Gourevitch, eds. (The Amphora Press, Gronton, CT), pp. 247–296.Google Scholar
  40. Ridgway, S. H. and Carder, D. A. (1997). “Hearing deficits measured in some Tursiops truncatus and discovery of a deaf/mute dolphin.” J. Acoust. Soc. Am. 101, 590–593.PubMedCrossRefGoogle Scholar
  41. Roitbalt, H. L., Penner, R. H., and Nachtigall, P. E. (1990). “Matching-to-sample by an echolocating dolphin,” J. Exp. Psych: Anim. Beh. Proc. 16, 85–95.Google Scholar
  42. Saidel, W. M. and Popper, A. N. (1987). “Sound reception in two anabantid fishes,” Comp. Biochem. Physiol. 88A, 37–44.CrossRefGoogle Scholar
  43. Schusterman, R. J. and Johnson, B. W. (1975). “Signal probability and response bias in California sea lions,” Psychol. Rec. 25, 39–45.Google Scholar
  44. Schusterman, R. J., Balliet, R. F., and Nixon, J. (1972). “Underwater audiogram of the California sea lion by the conditioned vocalization technique,” J. Exper. Analy. Behav. 17, 339–350.CrossRefGoogle Scholar
  45. Schusterman, R. J., Barrett, B., and Moore, P. (1975). “Detection of underwater signals by a California sea lion and bottlenose porpoise: variation in the payoff matrix,” J. Acoust. Sec. Am. 57, 1526–1632.CrossRefGoogle Scholar
  46. Schusterman, R. J. (1974). “Low false-alarm rates in signal detection by marine mammals,” J. Acoust. Soc. Am. 55, 845–847.PubMedCrossRefGoogle Scholar
  47. Schusterman, R. J. (1976). “California sea lion underwater auditory detection and variation of reinforcement schedules,” J. Acoust. Soc. Am. 59, 997–1000.PubMedCrossRefGoogle Scholar
  48. Schusterman, R. J. (1980). “Behavioral methodology in echolocation by marine mammals,” in Animal Sonar Systems, R.-G Busnel and J. F. Fish, eds. (Plenum, New York), pp. 11–41.Google Scholar
  49. Simpson, W. A. (1988). “The method of constant stimuli is efficient,” Per. Psych. 44, 433–436.CrossRefGoogle Scholar
  50. Skinner, B. F. (1961). Cumulative Record, (Appleton-Century-Crofts, New York).CrossRefGoogle Scholar
  51. Snodgrass, J. G. (1972). Theory and Experimentation in Signal Detection (Life Science Assoc., Baldwin, New York).Google Scholar
  52. Spehlmann, R. (1985). Evoked Potential Primer: Visual, Auditory, and Somatosensory Evoked Potentials in Clinical Diagnosis,(Butterworth, Boston).Google Scholar
  53. Supin, A. Y. and Popov, V. V. (1990). “Frequency-selectivity of the auditory system in the bottle-nose dolphin, Tursiops truncatus,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 385–93.Google Scholar
  54. Supin, A. Y. and Popov, V. V. (1993). “Direction-dependent spectral sensitivity and interaural spectral difference in a dolphin: evoked potential study,” J. Acoust. Soc. Am. 93, 3490–3495.PubMedCrossRefGoogle Scholar
  55. Supin, A. Ya, Popov, V. V. (1995). “ Temporal resolution in the dolphin's auditory system revealed by double-click evoked potential study,” J. Acoust. Soc. Am. 97, 2586–2593.PubMedCrossRefGoogle Scholar
  56. Supin, A. Y., Popov, V. V., and Klishin, V. O. (1993). “ABR frequency tuning curves in dolphins,” J. Comp. Physio. A. 173, 649–656.Google Scholar
  57. Supin, A. Ya, Popov, V. V., and Mass, A. M. (2001). The Sensory Physiology of Aquatic Mammals (Kluwer Academic Publishing, Boston).CrossRefGoogle Scholar
  58. Szymanski, M. D., Bain, D. W., and Henry, K. R. (1995). “Auditory evoked potentials of a killer whale (Orcinus orca),” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 1–10.Google Scholar
  59. Szymanski, M. D., Bain, D. E., Kiehl, K., Pennington, S., Wong, S., and Henry, K. R. (1999). “Killer whale (/Orcinus orca/): Auditory brainstem response and behaviorial audiograms,” J. Acoust. Soc. Am. 106, 1134–1141.PubMedCrossRefGoogle Scholar
  60. Swets, J. A. (1964). Signal Detection and Recognition by Human Observers (John Wiley & Sons, New York).Google Scholar
  61. Tanner, W. P., Jr. and Swets, J. A. (1954). “A decision-making theory of visual detection,” Psych. Rev. 61, 401–409.CrossRefGoogle Scholar
  62. Tanner, W. P., Jr., Swets, J. A., Green, D. M. (1956). Some General Properties of the Hearing Mechanism, University of Michigan: Electronic Defense Group Technical Report No. 30.Google Scholar
  63. Tavolga, W. N. and Wodinsky, J. (1963). “Auditory capacities in fishes: Pure tone thresholds in nine species of marine teleosts,” Bull. Amer. Mus. Nat. Hist. 126, 179–239.Google Scholar
  64. Thompson, R. K. R. and Herman, L. M. (1975). “Underwater frequency discrimination in the bottlenose dolphin (1-140 kHz) and the human (1-8 kHz),” J. Acoust. Soc. Am. 57, 943–948.PubMedCrossRefGoogle Scholar
  65. Vel’min, V. A. and Dubrovskiy, N. A. (1975). “On the analysis of pulsed sounds by dolphins,” Dokl. Adak. Nauk. SSSR 225, 470–473.Google Scholar
  66. Vel′min, V. A., Titov, A. A., and Yurkevich, L. I. (1975). “Time summation of pulses in the bottlenose dolphin,” in Morskiye mtekopitayusheiye. Mater. 6-go Vses. soveshch. poizuch. morsk. mtekopitayshchikh, Part 1. Kiev: Naukova Dumka, pp. 77–80.Google Scholar
  67. Weiss, B. A. (1966). “Auditory sensitivity in goldfish (Carassius auratus),” J. Aud. Res. 6, 321–335.Google Scholar
  68. Yan, H. Y. and Popper, A. N. (1991). “An automated positive reward method for measuring acoustic sensitivity in fish,” Behav. Res. Meth., Instru. & Compu. 23, 351–356.CrossRefGoogle Scholar
  69. Yan, H. Y. and Popper, A. N. (1992). “Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier),” J. Comp. Physiol. A 171, 105–109.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  2. 2.Applied Research LaboratoryPenn State UniversityUSA

Personalised recommendations