Skip to main content

Experimental Psychological and Electrophysiological Methodology

  • Chapter
  • First Online:
Book cover Principles of Marine Bioacoustics

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 2789 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Au, W. W. L. and Snyder, K. J. (1980). “Long-Range Target Detection in Open Waters by an Echolocating Atlantic Bottlenose Dolphin (Tursiops truncatus),” J. Acoust. Soc. Am., 68, 1077–1084.

    Article  Google Scholar 

  • Au, W. W. L. and Turl, C. W. (1984). “Dolphin biosonar detection in clutter: variation in the payoff matrix,” J. Acoust. Soc. Am., 76, 955–957.

    Article  Google Scholar 

  • Bullock, T. H., Grinnell, A. D., Ikezono, E., Kameda, K., Nomoto, K., Sato, O., Suga, N., and Yanigisawa, K. (1968). “Electrophysiological studies of central auditory mechanisms in cetaceans,” Z. Vergl. Physiol. 59, 117–156.

    Google Scholar 

  • Chapman, C. J. and Sand, O. (1974). “Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae),” Comp. Biochem. Physiol. 47A, 371–385.

    Article  Google Scholar 

  • Dolphin, W. F. and Mountain, D. C. (1993). “The envelope following response (EFR) in the Mongolian gerbil to sinusoidally amplitude-modulated signals in the presence of simultaneously gated pure tones,” J. Acoust. Soc. Am. 94, 3215–3226.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, W. F., Chertoff, M. E., and Burkard, R. F. (1994). “Comparison of the envelope following response in the Mongolian gerbil using two-tone and sinusoidally amplitude modulated tones,” J. Acoust. Soc. Am. 96, 2225–2234.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, W. F., Au, W. W. L., Nachtigall, P. E., and Pawloski, J. (1995). “Modulation rate transfer functions to low-frequency carriers in three species of cetaceans,” J. Comp. Physiol. A. 177, 235–245.

    Article  Google Scholar 

  • Dolphin, W. F. (1996). “Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components,” J. Comp. Physiol. A. 179, 113–121.

    Article  Google Scholar 

  • Egan, J. P. (1975). Signal Detection Theory and ROC Analysis (Academic Press, New York).

    Google Scholar 

  • Elliot, P. B. (1964). “Table of d′.” in Signal Detection and Recognition by Human Observers, J. A. Swets, ed. (John Wiley & Sons, New York).

    Google Scholar 

  • Enger, P. S. (1967). “Hearing in herring,” Comp. Biochem. Physiol. 22, 527–538.

    CAS  Google Scholar 

  • Evans, W. E. (1967). “Discrimination of different metallic plates by an echolocating delphinid,” in Animal Sonar Systems: Biology and Bionics, R. G. Busnel, ed. (Laboratoire de Phsiologie Acoustique, Jouy-en-Josas, France), pp. 363–383.

    Google Scholar 

  • Evans, W. E. (1973). “Echolocation by marine delphinids and one species of freshwater dolphin,” J. Acoust. Soc. Am. 54, 191–199.

    Article  Google Scholar 

  • Fay, R. R. (1969). “Behavioral audiogram for the goldfish,” J. Aud. Res. 9, 112–121.

    Google Scholar 

  • Fay, R. R. (1978). “Coding of information in single auditory-nerve fibers of the goldfish,” J. Acoust. Soc. Am. 63, 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1984). “The goldfish ear codes the axis of acoustic particle motion in three dimensions,” Science 225, 951–954.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, T. and Ishii, Y. (1967). “Neurophysiological studies on hearing in goldfish,” J. Neurophysiol. 30, 1377–1403.

    PubMed  CAS  Google Scholar 

  • Gescheider, G. A. (1976). Psychophysics: Method and Theory, (John Wiley & Sons, New York).

    Google Scholar 

  • Green, D. M. and Swets, J. A. (1966). Signal Detection Theory and Psychophysics (R. E. Krieger Publishing Co., Huntington, New York).

    Google Scholar 

  • Hammer, C. E., Jr. and Au, W. W. L. (1980). “Porpoise echo-recognition: an anlysis of controlling target characteristics,” J. Acoust. Soc. Am. 68, 1285–1293.

    Article  Google Scholar 

  • Herman, L. M. and Arbeit, W. R. (1972). “Frequency difference limens in the bottlenose dolphin 1-70 kHz,” J. Aud. Res. 12, 109–120.

    Google Scholar 

  • Horner, J. L., Longo, N. and Bitterman, M. E. (1961). “A shuttle-box for fish and a control circuit of general applicability,” Am. J. Psychol. 74, 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, D. W. (1972). “Auditory freqeuncy discrimination in the Atlantic bottlenose dolphin, Tursiops truncatus Montagu: a preliminary report,” J. Acoust. Soc. Am. 53, 696–697.

    Article  Google Scholar 

  • Johnson, R. A., Moore, P. W. B., Stoermer, M. W., Pawloski, J. L., and Anderson, L.C. (1988). “Temporal order discrimination within the dolphin critical interval,” in Animal Sonar: Processes and Performance. P. E. Nachtigall and P. W. B. Moore, eds., Plenum Press, New York, pp. 317–321.

    Google Scholar 

  • Kenyon, T. N., Ladich, F., and Yan, H. Y. (1998). “A comparative study of hearing ability in fishes: the auditory brainstem response approach,” J. Comp. Physiol. A 182, 307–318.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, H. (1970). “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477.

    Article  Google Scholar 

  • Moore, P. W. B. (1975). “Underwater localization of click and pulsed pure-tone signals by the California sea lion (Zalophus californianus),” J. Acoust. Soc. Am. 57, 406–410.

    Article  PubMed  CAS  Google Scholar 

  • Moushegian, G., Rupert, A. L., and Stillman, R. D. (1983). “Scalp recorded early responses in man to frequencies in the speech range,” Electroencephalogr. Clin. Nenrophysiol. 35, 665–667.

    Google Scholar 

  • Murchison, A. E. (1980). “Maximum detection range and range resolution in echolocating bottlenose popoises (Tursiops truncates),” in Animal Sonar Systems, R. G. Busnel and J.F. Fish, eds. Plenum Press, NY. pp. 43–70.

    Google Scholar 

  • Otis, L. S., Cerf, J. A., and Thomas, G. J. (1957). “Conditioned inhibition of respiration and heart rate in the goldfish,” Science 126, 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, W. W., Birdsall, T. G., and Fox, W. C. (1954). “The theory of signal detectability,” IRE PGIT 4, 171–212.

    Google Scholar 

  • Popov, V. V. and Supin, A. Y. (1990a). “Electrphysiological studies of hearing in some cetaceans and a manatee,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 405–415.

    Google Scholar 

  • Popov, V. V. and Supin, A. Y. (1990b). “Localization of the acoustic window at the dolphin’s head,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 417–426.

    Google Scholar 

  • Popov, V. V., Supin, A. Y., and Klishin, V. O. (1995). “Frequency tuning curves of the dolphin’s hearing: Envelope-following response study,” J. Comp. Physiol. A 178, 571–577.

    Google Scholar 

  • Ramcharitar, J. U., Higgs, D. M., and Popper, A. N. (2006). “Audition in sciaenid fishes with different swim bladder-inner ear configurations,” J. Acoust. Soc. Am. 119, 439–443.

    Article  PubMed  Google Scholar 

  • Renaud, D. L. and Popper, A. N. (1975). “Sound localization by the bottlenose porpoise Tursiops truncates,” J. Exp. Biol. 63, 569–585.

    PubMed  CAS  Google Scholar 

  • Rickards, F. W. and Clark, G. M. (1984). “Steady state evoked potentials to amplitude-modulated tones,” in Evoked PotentialsII , R. H. Nodar and C. Barber, eds. Butterworth, Boston. pp. 163–168.

    Google Scholar 

  • Ridgway, S. H. (1980). “Electrophysiological experiments on hearing in odontocetes,” in Animal Sonar, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum, New York), pp. 483–493.

    Google Scholar 

  • Ridgway, S. H. (1983). “Dolphin hearing and sound production in health and illness,” in H earing and Other Senses: Presentations in Honor of E. G. Wever , R. R. Fay and G. Gourevitch, eds. (The Amphora Press, Gronton, CT), pp. 247–296.

    Google Scholar 

  • Ridgway, S. H. and Carder, D. A. (1997). “Hearing deficits measured in some Tursiops truncatus and discovery of a deaf/mute dolphin.” J. Acoust. Soc. Am. 101, 590–593.

    Article  PubMed  CAS  Google Scholar 

  • Roitbalt, H. L., Penner, R. H., and Nachtigall, P. E. (1990). “Matching-to-sample by an echolocating dolphin,” J. Exp. Psych: Anim. Beh. Proc. 16, 85–95.

    Google Scholar 

  • Saidel, W. M. and Popper, A. N. (1987). “Sound reception in two anabantid fishes,” Comp. Biochem. Physiol. 88A, 37–44.

    Article  Google Scholar 

  • Schusterman, R. J. and Johnson, B. W. (1975). “Signal probability and response bias in California sea lions,” Psychol. Rec. 25, 39–45.

    Google Scholar 

  • Schusterman, R. J., Balliet, R. F., and Nixon, J. (1972). “Underwater audiogram of the California sea lion by the conditioned vocalization technique,” J. Exper. Analy. Behav. 17, 339–350.

    Article  CAS  Google Scholar 

  • Schusterman, R. J., Barrett, B., and Moore, P. (1975). “Detection of underwater signals by a California sea lion and bottlenose porpoise: variation in the payoff matrix,” J. Acoust. Sec. Am. 57, 1526–1632.

    Article  CAS  Google Scholar 

  • Schusterman, R. J. (1974). “Low false-alarm rates in signal detection by marine mammals,” J. Acoust. Soc. Am. 55, 845–847.

    Article  PubMed  CAS  Google Scholar 

  • Schusterman, R. J. (1976). “California sea lion underwater auditory detection and variation of reinforcement schedules,” J. Acoust. Soc. Am. 59, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  • Schusterman, R. J. (1980). “Behavioral methodology in echolocation by marine mammals,” in Animal Sonar Systems, R.-G Busnel and J. F. Fish, eds. (Plenum, New York), pp. 11–41.

    Google Scholar 

  • Simpson, W. A. (1988). “The method of constant stimuli is efficient,” Per. Psych. 44, 433–436.

    Article  CAS  Google Scholar 

  • Skinner, B. F. (1961). Cumulative Record, (Appleton-Century-Crofts, New York).

    Book  Google Scholar 

  • Snodgrass, J. G. (1972). Theory and Experimentation in Signal Detection (Life Science Assoc., Baldwin, New York).

    Google Scholar 

  • Spehlmann, R. (1985). Evoked Potential Primer: Visual, Auditory, and Somatosensory Evoked Potentials in Clinical Diagnosis,(Butterworth, Boston).

    Google Scholar 

  • Supin, A. Y. and Popov, V. V. (1990). “Frequency-selectivity of the auditory system in the bottle-nose dolphin, Tursiops truncatus,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 385–93.

    Google Scholar 

  • Supin, A. Y. and Popov, V. V. (1993). “Direction-dependent spectral sensitivity and interaural spectral difference in a dolphin: evoked potential study,” J. Acoust. Soc. Am. 93, 3490–3495.

    Article  PubMed  Google Scholar 

  • Supin, A. Ya, Popov, V. V. (1995). “ Temporal resolution in the dolphin's auditory system revealed by double-click evoked potential study,” J. Acoust. Soc. Am. 97, 2586–2593.

    Article  PubMed  Google Scholar 

  • Supin, A. Y., Popov, V. V., and Klishin, V. O. (1993). “ABR frequency tuning curves in dolphins,” J. Comp. Physio. A. 173, 649–656.

    CAS  Google Scholar 

  • Supin, A. Ya, Popov, V. V., and Mass, A. M. (2001). The Sensory Physiology of Aquatic Mammals (Kluwer Academic Publishing, Boston).

    Book  Google Scholar 

  • Szymanski, M. D., Bain, D. W., and Henry, K. R. (1995). “Auditory evoked potentials of a killer whale (Orcinus orca),” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil. The Netherland), pp. 1–10.

    Google Scholar 

  • Szymanski, M. D., Bain, D. E., Kiehl, K., Pennington, S., Wong, S., and Henry, K. R. (1999). “Killer whale (/Orcinus orca/): Auditory brainstem response and behaviorial audiograms,” J. Acoust. Soc. Am. 106, 1134–1141.

    Article  PubMed  Google Scholar 

  • Swets, J. A. (1964). Signal Detection and Recognition by Human Observers (John Wiley & Sons, New York).

    Google Scholar 

  • Tanner, W. P., Jr. and Swets, J. A. (1954). “A decision-making theory of visual detection,” Psych. Rev. 61, 401–409.

    Article  Google Scholar 

  • Tanner, W. P., Jr., Swets, J. A., Green, D. M. (1956). Some General Properties of the Hearing Mechanism, University of Michigan: Electronic Defense Group Technical Report No. 30.

    Google Scholar 

  • Tavolga, W. N. and Wodinsky, J. (1963). “Auditory capacities in fishes: Pure tone thresholds in nine species of marine teleosts,” Bull. Amer. Mus. Nat. Hist. 126, 179–239.

    Google Scholar 

  • Thompson, R. K. R. and Herman, L. M. (1975). “Underwater frequency discrimination in the bottlenose dolphin (1-140 kHz) and the human (1-8 kHz),” J. Acoust. Soc. Am. 57, 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Vel’min, V. A. and Dubrovskiy, N. A. (1975). “On the analysis of pulsed sounds by dolphins,” Dokl. Adak. Nauk. SSSR 225, 470–473.

    Google Scholar 

  • Vel′min, V. A., Titov, A. A., and Yurkevich, L. I. (1975). “Time summation of pulses in the bottlenose dolphin,” in Morskiye mtekopitayusheiye. Mater. 6-go Vses. soveshch. poizuch. morsk. mtekopitayshchikh, Part 1. Kiev: Naukova Dumka, pp. 77–80.

    Google Scholar 

  • Weiss, B. A. (1966). “Auditory sensitivity in goldfish (Carassius auratus),” J. Aud. Res. 6, 321–335.

    Google Scholar 

  • Yan, H. Y. and Popper, A. N. (1991). “An automated positive reward method for measuring acoustic sensitivity in fish,” Behav. Res. Meth., Instru. & Compu. 23, 351–356.

    Article  Google Scholar 

  • Yan, H. Y. and Popper, A. N. (1992). “Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier),” J. Comp. Physiol. A 171, 105–109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Whitlow W.L. Au .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Au, W.W., Hastings, M.C. (2008). Experimental Psychological and Electrophysiological Methodology. In: Principles of Marine Bioacoustics. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78365-9_8

Download citation

Publish with us

Policies and ethics