Fourier Analysis

Part of the Modern Acoustics and Signal Processing book series (MASP)


Fast Fourier Transform Fourier Series Discrete Fourier Transform Inverse Fourier Transform Side Lobe 


  1. Au, W. W. L. and Floyd, R. W. (1979). “Digital equalization of underwater transducers for the projection of broadband acoustic signals,” J. Acoust. Soc. Am. 65, 1585–1588.CrossRefGoogle Scholar
  2. Bogert, B. P., Healy, M. J., and Tukey, J. W. (1963). “The quefrequency analysis of time series for echoes: cepstrum, pseudo autocovariance, cross spectrum and Saphe cracking,” in Time Series Symposium, M. Rosenblatt, ed. (Wiley, New York), pp. 201–243.Google Scholar
  3. Brigham, E. O. (1988). The Fast Fourier Transform and Its Applications (Prentice Hall, Englewood Cliffs, New Jersey).Google Scholar
  4. Bracewell, R. M. (1976). The Fourier Transform and Its Application (McGraw-Hill, New York).Google Scholar
  5. Bracewell, R. N. (1978). The Fourier Transform and its Applications (2nd Edition). McGraw-Hill, N.Y.Google Scholar
  6. Cooley, J. W. and Tukey, J. W. (1965). “An algorithm for the machine calculation of complex Fourier series,” Math. Of Comput., 19, 297–301.CrossRefGoogle Scholar
  7. Cooley, J. W., Lewis, P. A. W., and Welch, P. D. (1967), “Historical notes on the fast Fourier transform,” Proc. IEEE, 55, 1676–1677.CrossRefGoogle Scholar
  8. Harris, F. J. (1976). “On the use of windows for harmonic analysis with the discrete Fourier Transform,” Proc. IEEE, 66, 51–83.CrossRefGoogle Scholar
  9. Kemerait, R. C., and Childers, D. G. (1972). “Signal detection and extraction by cepstrum techniques.” IEEE Trans. Info. Theory, IT-18, 745–759.Google Scholar
  10. Kraniauskas, P. (1992). Transforms in Signals and Systems (Addison-Wesley,Wokingham, England).Google Scholar
  11. Lyons, R. (1997). Understanding Digital Signal Processing (Addison-Wesley, Workingham, England).Google Scholar
  12. Papoulis, A. (1984). The Fourier Integral and Its Applications, 2 nd ed. (McGraw-Hill, New York).Google Scholar
  13. Ramirez, R. W. (1985). The FFT Fundamentals and Concepts (Prentice Hall, Englewood Cliffs, New Jersey).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  2. 2.Applied Research LaboratoryPenn State UniversityUSA

Personalised recommendations