Some Signal Processing Techniques

  • Whitlow W.L. Au
  • Mardi C. Hastings
Part of the Modern Acoustics and Signal Processing book series (MASP)

By this time we should be very aware of the fact that marine animals produce a wide varieties of different type of sounds. These sounds include clicks, tone pulses, AM pulses, FM chirps, and combination signals containing AM, FM, and constant frequency components. Up to this point, signals have been analyzed and characterized mainly by using the FFT to determine their spectral characteristics. In this chapter, we will introduce some additional signal processing techniques that may be helpful in further characterizing and analyzing these signals. Some concepts from radar signal processing will be used to analyze the properties of dolphin sonar signals. We will assume that echoes are the result of reflection from point targets so that their waveforms will be the same as the transmitted signals but with lower amplitudes. We will also assume that echoes are received and processed by a matched filter receiver. Although a matched-filter point of view will be taken in much of this section,...


Matched Filter Ambiguity Function Bowhead Whale Comparison Target Sonar Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altes, R. A. (1973). “Some invariance properties of the wideband ambiguity function,” J. Acoust. Soc. Am. 53, 1154–1160.CrossRefGoogle Scholar
  2. Altes, R. A. and Faust, W. J. (1978). Further Development and New Concepts for Bionic Sonar. Vol. 1 – Software Processors, Naval Ocean Systems Center Technical Report 404, San Diego, CA 92152.Google Scholar
  3. Altes, R. A. (1980a). “Models for echolocation,” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum, New York), pp. 625–671.Google Scholar
  4. Au, W. W. L. (1988). “Detection and recognition models of dolphin sonar systems,” in Animal Sonar: Processes and Performance, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum Press, New York), pp. 753–768.Google Scholar
  5. Au, W. W. L. (1993). The Sonar of Dolphins (Springer-Verlag, NY).Google Scholar
  6. Au, W. W. L. (1994). “Comparison of Sonar Discrimination: Dolphin and an Artificial Neural Network,” (W. Au), J. Acoust. Soc. Am. 95, 2728–2735.PubMedCrossRefGoogle Scholar
  7. Au, W. W. L., Moore, P. W. B., and Pawloski, D. A. (1988). “Detection of complex echoes in noise by an echolocating dolphin,” J. Acoust. Soc. Am. 83, 662–668.PubMedCrossRefGoogle Scholar
  8. Au, W. W. L. and Martin, D. W. (1989). “Insights into dolphin sonar discrimination capabilities from human listening experiment,” J. Acoust. Soc. Am. 86, 1662–1670.PubMedCrossRefGoogle Scholar
  9. Au, W. W. L. and Moore, P. W. B. (1990). “Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin,” J. Acoust. Soc. Am. 87 , 1635–1638.Google Scholar
  10. Au, W. W. L. and Pawloski, D. (1992). “Cylinder wall thickness difference discrimination by an echolocating atlantic bottlenose dolphin,” J. Comp. Physiol. A. 172, 41–47.Google Scholar
  11. Au, W. W. L. and Nachtigall, P. E. (1995). “Artificial neural network modeling of dolphin echo location,” in Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall, eds. (De Spil Publishing, Woerden, The Netherlands), pp. 183–199.Google Scholar
  12. Au, W. W. L., Andersen, L., Rasmussen, A., Roitblat, H., and Nachtigall, P. E. (1995). “neural network modeling of a dolphin's sonar discrimination capabilities,” J. Acoust. Soc. Am. 98, 43–50.PubMedCrossRefGoogle Scholar
  13. Burdic, W. S. (1968). Radar Signal Analysis (Prentice-Hall, Englewoord Cliffs, NJ).Google Scholar
  14. Beuter, K. J. (1980). “Echo evaluation in auditory system of bats,” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum Press, New York), pp. 747–761.Google Scholar
  15. Bracewell, R. N. (1978). The Fourier Transform and Its Applications, (Second Edition) (McGraw-Hill, New York).Google Scholar
  16. Brigham, E. O. (1988). The Fast Fourier Transform and Its Applications (Prentice Hall, Englewood Cliffs, NJ).Google Scholar
  17. Chestnut, P., Landsman, H., and Floyd, R. W. (1979). “A sonar target recognition experiment,” J. Acoust. Soc. Am. 66, 140–147.CrossRefGoogle Scholar
  18. Cohen, L. (1994). Time Frequency Analysis: Theory and Applications. (Prentice-Hall, NY).Google Scholar
  19. Dayhoff, J. (1990). Neural Network Architectures An Introduction (Van Nostrand Reinhold, New York).Google Scholar
  20. Dziedzic, A., Escudie, B., Guillard, P., and Hellion, A. (1969). “Mise en evidence de la tolerace a l'effet Doppler de l'emission sonar de (Delphinus delphis),” Cetace odontocete. C.R. Acad. Sci. 279, 313–1316.Google Scholar
  21. Dziedzic, A., Chiollaz, M., Escudie, B., and Hellion, A. (1979). “Sur queslques Proprietes des Signaux onar Frequence du Dauphin (Phocoena phocoena),” Acustica 37, 258–266.Google Scholar
  22. Erbe, C. (1997). “Zones of masking around icebreakers affecting beluga whales,” J. Acoust. Soc. Am. 102, 3102.CrossRefGoogle Scholar
  23. Erbe, C. (2000). “Detection of whale calls in noise: performance comparison between a beluga whale, human listeners, and a neural network,” J. Acoust. Soc. Am. 108, 297–303.PubMedCrossRefGoogle Scholar
  24. Fletcher, H. (1940). “Auditory patterns,” Rev. Mod. Phys. 12, 47–65.CrossRefGoogle Scholar
  25. Gabor, D. (1947). “Acoustic quanta and the theory of hearing,” Nature 159, 591–594.PubMedCrossRefGoogle Scholar
  26. Green, D. and Swet, J. (1966). Signal Detection Theory and Psychophysics (Krieger Pub. Co., Huntington, New York).Google Scholar
  27. Grossberg, S. (1969). “Some networks that can learn, remember and reproduce any number of complicated space-time patterns,” J. Math. Mech. 19, 53–91.Google Scholar
  28. Hammer, Jr. C. E. and Au, W. W. L. (1980). “Porpoise echo-recognition: an analysis of controlling target characteristics,” J. Acoust. Soc. Am. 68, 1285–1293.CrossRefGoogle Scholar
  29. Hecht-Nielsen, R. (1987). “counterpropagation networks,” in Proceedings of the IEEE First International Conference on Neural Networks, M. Caudill and C. Butler, eds. Vol 2, (SOS Printing, S.D.), pp. 19–32.Google Scholar
  30. Hecht-Nielsen, R. (1989). Neurocomputing (Addison-Wesley, Reading Ma).Google Scholar
  31. Herman, L. M. and Arbeit, W. R. (1972). “Frequency difference limens in the bottlenose dolphin: 1-70 kHz,” J. Audit. Res. 12, 109–120.Google Scholar
  32. Johnson, C. S. (1967). “Sound detection thresholds in marine mammals,” in Marine Bioacoustics, (Pergamon Press, NY), pp. 247–260.Google Scholar
  33. Johnson, S. C. (1968a). “Relation between absolute threshold and duration of tone pulse in the Bottlenosed Porpoise,” J. Acoust. Soc. Am. 43, 757–763.CrossRefGoogle Scholar
  34. Johnson, S. C. (1968b). “Masked tonal thresholds in the Bottlenosed Porpoise,” J. Acoust. Soc. Am. 44, 965–967.CrossRefGoogle Scholar
  35. Kamminga, C. and Beitsma, G. R. (1990). “Investigations on cetacean soanr IX remarks on dominant sonar frequencies from Tursiops truncates,” Aquatic Mamml. 16, 14–20.Google Scholar
  36. Kelly, E. J. and Wishner, R. P. (1965). “Matched-filter theory for high-velocity, accelerating targets,” IEEE Trans. Microwave Theory Tech. 9, 56–69.Google Scholar
  37. Kohonen, T. (1988). Self-Organizing and Associative Memory (Springer-Verlag, New York).Google Scholar
  38. Martin , D. W., and Au, W. W. L. (1986). Investigation of Broadband Sonar Classification Cues, Naval Ocean Systems Center Technical Report 1123, San Diego, Ca. 92152.Google Scholar
  39. Martin, D. W. and Au, W. W. L. (1988). “An automatic target recognition algorithm using time-domain features,” in Animal Sonar: Processes and Performance, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum, New York), pp. 829–833.Google Scholar
  40. Lin, Z.-B. (1984). “A method for computation of wideband ambiguity function and the numerical analysis of the bat's sonar signal,” IEEE ICASSP Proc. 3, 47.11.1–47.11.4.Google Scholar
  41. Lin, Z.-B. (1988). “Wideband ambiguity function of broadband signals,” J. Acoust. Am. 83, 2108–2116.CrossRefGoogle Scholar
  42. Rumelhart, D. E. and McClelland, J. L. (1986). Parallel Distributed Processing, Vol 1 (MIT Press, Cambridge, MA).Google Scholar
  43. Marple, Jr. S. L. (1987). Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliff, NJ).Google Scholar
  44. Meyer, P. L. (1965). Introductory Probability and Statistical Applications (Addison Wesley, Reading, Mass).Google Scholar
  45. Moore, P. W. B., Roitblat, H. L., Penner, R. H., and Nachtigall, P. E. (1991). “Recognizing successive dolphin echoes with an integrator gateway network,” Neural Networks, 4, 701–709.CrossRefGoogle Scholar
  46. Murchison, A. E. (1980). “Detection Range and Range Resolution of Porpoise,” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum, New York), pp. 43–70.Google Scholar
  47. Murray, S. O. (1997). “The graded structure and neural network classification of false killer whale (Pseudorca crassidens) vocalization,” M.S. Thesis, Univ. of Hawaii.Google Scholar
  48. Parker, D. B. (1982). “Learning logic,” Invention Report S81-64, File 1, Office of Technology Licensing, Stanford University, Stanford, CA.Google Scholar
  49. Potter, J. R., Mellinger, D. K., and Clark, C. W. (1994). “Marine mammal call discrimination using artificial neural networks,” J. Acoust. Soc. Am. 96, 1256–1262.Google Scholar
  50. Rihaczek, A. W. (1969). Principles of High-Resolution Radar, (McGraw-Hill, New York).Google Scholar
  51. Roitblat, H. L., Moore, P. W. B., Nachtigall, P. E., Penner, R. H., and Au, W. W. L. (1989). “Natural echolocation with an artificial neural network,” Inter. J. Neural Net. 1, 239–248.Google Scholar
  52. Roitblat, H. L., Moore, P. W. B., Helweg, D. A., and Nachtigall, P. E. (1992). “Representation and processing of acoustic information in a biomimetic neural network,” Proceedings of the Second International Conference on Simulation of Adaptive Behavior, J. A. Meyer, H. L. Roitblat, and S. W. Wilson, eds. (MIT Press, Cambridge, MA), pp. 90–99.Google Scholar
  53. Roitblat, H., Au, W. W. L., Nachtigall, P. E., Shizumura, R., and Moons, G. (1996). “Sonar recognition of targets embedded in sediment,” Neural Networks, 8, 1263–1273.CrossRefGoogle Scholar
  54. Schusterman, R. J., Kersting, D. A., and Au, W. W. L. (1980). “Stimulus control of echolocation pulses in Tursiops truncatus,” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum Press, New York), pp. 981–982.Google Scholar
  55. Schwartz, M. (1980). Information Transmission, Modulation, and Noise, 3rd edition (McGraw Hill, New York).Google Scholar
  56. Specht, D. F. (1990). “Probalistic neural networks,” Neural Networks, 3, 109–118.CrossRefGoogle Scholar
  57. Thompson, R. K. R. and Herman, L. M. (1975). “Underwater frequency discrimination in the bottlenose dolphin (1-140 kHz) and human (1-8 kHz),” J. Acoust. Soc. Am. 57, 943–947.PubMedCrossRefGoogle Scholar
  58. Urick, R. J. (1983). Principles of Underwater Sound, 3rd edition (McGraw Hill, New York).Google Scholar
  59. Urkowitz, H. (1967). “Energy detection of unknown deterministic signals,” Proc. IEEE. 55, 523–531.Google Scholar
  60. Wasserman, P. D. (1989). Neural Computing Theory and Practice (Van Nostrand Reinhold, New York).Google Scholar
  61. Werbos, P. J. (1974). “Beyond regression: new tools for prediction and analysis in the behavioral sciences,” Masters thesis, Harvard Univ., Cambridge, MAGoogle Scholar
  62. Woodward, P. M. (1953). Probability and Information Theory with Applications to Radar (Pergamon Press, New York).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  2. 2.Applied Research LaboratoryPenn State UniversityUSA

Personalised recommendations