Advertisement

Echolocation in Marine Mammals

  • Whitlow W.L. Au
  • Mardi C. Hastings
Chapter
Part of the Modern Acoustics and Signal Processing book series (MASP)

Echolocation is the process in which an organism projects acoustic signals and obtains a sense of its surrounding from the echoes it receives. In a general sense, any animal with a capability to hear sounds can echolocate by emitting sounds and listening to the echoes. A person in an empty room can gain an idea of the size and shape of the room by emitting sounds and listening to the echoes from the different walls. However, we are using echolocation in a more specific sense in which an animal has a very specialized capability to determine the presence of objects considerably smaller than itself, discriminate between various objects, recognize specific objects and localize objects in three-dimensional space (determine range and azimuth). Dolphins, bats, and perhaps sperm whales, have this specialized capability of echolocation.

A dolphin’s ability to survive and thrive in an aquatic environment is maximized by its ability to echolocate. Acoustic energy propagates in water more...

Keywords

Bottlenose Dolphin Sperm Whale Target Strength Source Level Gray Seal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albers, V. M. (1965). Underwater Acoustics Handbook II (Penn St. U. Press, Univ. Park, PA).Google Scholar
  2. Aroyan, J. L., Cranford, T. W., Kent, J., and Norris, K. S. (1992). “Computer Modeling of Acoustic Beam Formation in (Delphinus delphis),” J. Acoust. Soc. Am. 95, 2539–2545.CrossRefGoogle Scholar
  3. Aroyan, J. L. (1996). “Three-Dimensional Numerical Simulation of Biosonar Signal Emission and Reception in the Common Dolphin,” Ph.D. Dissertation, U.C. Santa Cruz.Google Scholar
  4. Au, W. W. L., Floyd, R. W., Penner, R. H., and Murchison, A. E. (1974). “Measurement of Echolocation Signals of the Atlantic Bottlenose Dolphin (Tursiops truncates) Montagu, in Open Waters,” J. Acoust. Soc. Am. 56, 1280–1290.PubMedCrossRefGoogle Scholar
  5. Au, W. W. L., Floyd, R. W., and Haun, J. E. (1978). “Propagation of Atlantic Bottlenose Dolphin Echolocation Signals,” J. Acoust. Soc. Am. 64, 411–422.CrossRefGoogle Scholar
  6. Au, W. W. L. (1980). “Echolocation Signals of the Atlantic Bottlenose Dolphin (Tursiops truncatus), in Open Waters,” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum, New York), pp. 251–282.Google Scholar
  7. Au, W. W. L., Schusterman, R., and Kersting, D. A. (1980). “Sphere-Cylinder Discrimination via Echolocation by (Tursiops truncates),” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum Press, New York), pp. 859–862.Google Scholar
  8. Au, W. W. L. and Snyder, K. J. (1980). “Long-range Target Detection in Open Waters by an Echolocating Atlantic Bottlenose Dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 68, 1077–1084.CrossRefGoogle Scholar
  9. Au, W. W. L. and Penner, R. H. (1981). “Target Detection in Noise by Echolocating Atlantic Bottlenose Dolphins,” J. Acoustic Soc. Am. 70, 687–693.CrossRefGoogle Scholar
  10. Au, W. W. L. and Turl, C. W. (1983). “Target Detection in Reverberation by an Echolocating Atlantic Bottlenose Dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 73, 1676–1681.PubMedCrossRefGoogle Scholar
  11. Au, W. W. L., Carder, D. A., Penner, R. H., and Scronce, B. L. (1985). “Demonstration of Adaptation in Beluga Whale Echolocation Signals,” J. Acoust. Soc. Am. 77, 726–730.PubMedCrossRefGoogle Scholar
  12. Au, W. W. L., Moore, P. W. B., and Pawloski, D. (1986). “Echolocation Transmitting Beam of the Atlantic Bottlenose Dolphin,” J. Acoust. Soc. Am. 688–691.Google Scholar
  13. Au, W. W. L., Penner, R. H., and Turl, C. W. (1987). “Propagation of Beluga Echolocation Signals,” J. Acoust. Soc. Am., 83, 807–812.CrossRefGoogle Scholar
  14. Au, W. W. L. and Martin, D. (1988). “Sonar Discrimination of Metallic Plates by Dolphins and Humans,” in Animal Sonar: Processes and Performance, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum, New York), pp. 809–812.Google Scholar
  15. Au, W. W. L., Moore, P. W. B., and Pawloski, D. A. (1988). “Detection of Complex Echoes in Noise by an Echolocating Dolphin,” J. Acoust. Soc. Am. 83, 662–668.PubMedCrossRefGoogle Scholar
  16. Au, W. W. L. and Turl, C. W. (1991). “Material Composition Discrimination of Cylinders at Different Aspect Angles by an Echolocating Dolphin,” J. Acoust. Soc. Am. 89, 2448–2451.CrossRefGoogle Scholar
  17. Au, W. W. L. (1992). “Application of the Reverberation-Limited Form of the Sonar Equation to Dolphin Echolocation,” J. Acoust. Soc. Am. 92, 1822–1826.PubMedCrossRefGoogle Scholar
  18. Au, W. W. L. and Pawloski, D. (1992). “Cylinder wall thickness difference discrimination by an echolocating atlantic bottlenose dolphin,” J. Comp. Physiol. A. (172), 41–47.Google Scholar
  19. Au, W. W. L. (1993). The Sonar of Dolphins (Springer-Verlag, New York).CrossRefGoogle Scholar
  20. Au, W. W. L., Pawloski, J., Nachtigall, P. E., Blonz, M., and Gisiner, R. (1995). “Echolocation Signal and Transmission Beam Pattern of a False Killer Whale (Pseudorca crassidens),” J. Acoust. Soc. of Am. 98, 51–59.CrossRefGoogle Scholar
  21. Awbrey, F. T., Norris, J. C., Hubbard, A. B., and Evans, W. E. (1979). “The Bioacoustics of the Dall's Porpoise-Salmon Drift Net Interaction,” H/SWRI Technical Report, pp. 79–120.Google Scholar
  22. Ayrapet'yants, E. S. and Konstantinov, A. I. (1974). Echolocation in Nature (Nauka, Leningrad).Google Scholar
  23. Backus, R. H. and Schevill, W. E. (1966). “Physeter Clicks,” in Whales, Dolphins and Porpoises, K. S. Norris, ed. (Univ. of California Press, Berkeley, CA), pp. 510–528.Google Scholar
  24. Bagdonas, A. P., Bel'kovich, V. M., and Krushinskaya, N. L. (1970). “Interaction Between Delphinid Analyzers in Discrimination,” J. Higher Neural Act. 20, 1070–1074.Google Scholar
  25. Barta, R. E. (1969). “Acoustical Pattern Discrimination by an Atlantic Bottlenosed Dolphin,” unpublished manuscript (Naval Undersea Center, San Diego, CA).Google Scholar
  26. Beamish, P. and Mitchell, E. (1973). “Short pulse length audio frequency sounds recorded in the presence of a minke whale (Balaenoptera acutorostrata),” Deep Sea Res. 20, 375-386.Google Scholar
  27. Bel'kovich, V. M. and Dubrovskiy, N. A. (1976). Sensory Basis of Cetacean Orientation (Nauka, Leningrad).Google Scholar
  28. Carder, D., Ridgway, S., Whitaker, B., and Geraci, J. (1995). “Hearing and Echolocation in a Pygmy Sperm Whale Kogia,” Eleventh Biennial Conf. Biol. Mar. Mamm., Dec. 14–18, (Orlando, FL. (A)).Google Scholar
  29. Clarke, M. R. (1979). “The Head of the Sperm Whale,” Sci. Am. 240, 106–117.CrossRefGoogle Scholar
  30. Cranford, T. W. (1992). “Functional morphology of the odontocete forehead: implications for sound generation,” Ph.D. Dissertation, Univ. Calif, Santa Cruz, CA.Google Scholar
  31. Cranford, T. W. (1999). “Evidence for multiple sonar signal generators in odontocetes,” 13th Biennial Conference of the Biol. of Mar. Mamml. Wailea, Maui, HI.Google Scholar
  32. Cranford, T. W. (2000). “In search of impulse sound sources in odontocetes,” in Hearing in Dolphins and Whales, W. W. L. Au, A. N. Popper, and R. R. Fay, eds., (Springer-Verlag, NY), pp. 109–155.CrossRefGoogle Scholar
  33. Cummings, W. C. and Thompson, P. O. (1971). “Underwater Sounds from the Blue Whale, Balaenoptera musculus,” J. Acoust. Soc. Am. 50, 1193–1198.CrossRefGoogle Scholar
  34. Dawson, S. M. (1988). “The High Frequency Sounds of Free-Ranging Hector's Dolphin, Cephalorhynchus hectori,” Rep. Int. Whal. Commn (Special Issue 9), 339–341.Google Scholar
  35. Dunn, J. L. (1969). “Airborne Measurements of the Acoustic Characteristics of a Sperm Whale,” J. Acoust. Soc. Am. 46, 1052–1054.CrossRefGoogle Scholar
  36. Evans, W. W. and Haugen, R. M. (1963). “An Experimental Study of the Echolocation Ability of a California Sea Lion, Zalophus californianus (Lesson),” Bull. Southern Calif. Acad. Sci. 62, 165–175.Google Scholar
  37. Evans, W. W. and Powell, B. A. (1967). “Discrimination of Different Metallic Plates by an Echolocating Delphinid,” in Animal Sonar Systems: Biology and Bionics, R. G. Busnel, ed. (Labaoratoire de Physiologie Acoustique, Jouy-en-Josas, France), pp. 363–382.Google Scholar
  38. Evans, W. E. (1973). “Echolocation by Marine Delphinids and One Species of Fresh-Water Dolphin,” J. Acoust. Soc. Am., 54, 191–199.CrossRefGoogle Scholar
  39. Evans, W. E., Awbrey, F. T., and Hackbarth, H. (1988). “High Frequency Pulse Produced by Free Ranging Commerson's Dolphin (Cephalorhynchus commersonii) Compared to those of Phocoenids,” Rep. Int. Whal. Commn. (Special Issue 9), 173–181.Google Scholar
  40. Fish, J. F., Johnson, C. S., and Ljungblad, D. K. (1976). “Sonar Target Discrimination by Instrumented Human Divers,” J. Acoust. Soc. Am. 59, 602–606.PubMedCrossRefGoogle Scholar
  41. Gagnon, G. I. and Clark, C. W. (1995). “The Use of U.S. Navy IUSS Passive Sonar to Monitor the Movement of Blue Whales,” Tenth Bien. Conf. Biol. Mar. Mamm., Nov. 11–15, 1993 (Galveston, Texas).Google Scholar
  42. Goold, J. C. and Jones, S. E. (1995). “Time and Frequency Domain Characteristics of Sperm Whale Clicks,” J. Acoust. Soc. Am. 93, 1279–1291.CrossRefGoogle Scholar
  43. Goold, J. C. (1996). “Signal Processing Techniques for Acoustic Measurement of Sperm Whale Body Lengths,” J. Acoust. Soc. Am. 100, 3431–3441.PubMedCrossRefGoogle Scholar
  44. Gordon, J. C. D. (1991). “Evaluation of A Method for Determining the Length of Sperm Whales, Physeter catodon, from Their Vocalizations,” J. Sool. London 224, 301–314.CrossRefGoogle Scholar
  45. Griffin, D. R., Webster, F. A., and Michael, C. R. (1960). “The Echolocation of flying Insects by Bats,” Animal Behav. 8, 141–154.CrossRefGoogle Scholar
  46. Gurevich, B. S. and Evans, W. E. (1976). “Echolocation Discrimination of Complex Planar Targets by the Beluga Whale (Delphinapterus leucas),” J. Acoust. Soc. Am. 60, S5.CrossRefGoogle Scholar
  47. Harley, H. E., Roitblat, H. L., and Nachtigall, P. E. (1996). “Object Representation in the Bottlenoise Dolphin (Tursiops truncatus): Integration of Visual and Echoic Information,” J. Exp. Psychol. Anim. Behav. Proc. 22, 164–174.Google Scholar
  48. Hatakeyama, Y., Ishii, K., Soeda, H., Shimamura, T., and Tobayame, T. (1988). “Observation of Harbor Porpoise's Behavior to Salmon Gillnet,” (Document submitted to the International North Pacific Fisheries Commission.) Fisheries Agency of Japan, Tokyo, Japan, 17 pp.Google Scholar
  49. Hatakeyama, Y. and Soeda, H. (1990). “Studies on Echolocation of Porpoises Taken in Salmon Gillnet Fisheries,” in Sensory Abilities of Cetaceans, J. A. Thomas and R. Kastelein, eds. (Plenum, New York), pp. 269–281.Google Scholar
  50. Helweg, D. A., Au, W. W. L., Roitblat, H., and Nachtigall, P. E. (1996). “Acoustic Basis for Recognition of Aspect-dependent Targets by an Echolocating Atlantic Bottlenose Dolphin,” J. Acoust. Soc. Am. 99, 2409–2420.PubMedCrossRefGoogle Scholar
  51. Herzing, D. L. (1996). “Vocalizations and Associated Underwater Behavior of Free-ranging Atlantic Spotted Dolphins (Stenella frontalis) and Bottlenose Dolphins (Tursiops truncatus),” Aquatic Mamm. 22(2), 61–79.Google Scholar
  52. Johnson, C. S. (1967). “Discussion,” in Animal Sonar Systems:Biology and Bionics, R. G. Busnel, eds. (Labaoratoire de Physiologie Acoustique, Jouy-en-Josas, France), pp. 384–398.Google Scholar
  53. Johnson, S. C. (1968). “Relation between absolute threshold and duration of tonepulse in the bottlenosed porpoise,” J. Acoust. Soc. Am. 43, 757–763.PubMedCrossRefGoogle Scholar
  54. Johnson, M., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., Tyack, P. L. (2004). “Beaked whales echolocate on prey,” Proc. R. Soc. Lond. B 271, pp. S383–386.Google Scholar
  55. Kamminga, C. (1988). “Echolocation Signal Types of Odontocetes,” in Animal Sonar: Processes and Performance, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum, New York), pp. 9–22.Google Scholar
  56. Kamminga, C. and Wiersma, H. (1981). “Investigations on Cetacean Sonar V: The True Nature of the Sonar Sound of Cephaloryncus Commersonii,” Aquatic Mamml. 9, 95–104.Google Scholar
  57. Levenson, C. (1974). “Source level and bistatic target strength of the sperm whale (Physeter catodon) measured from an oceanographic aircraft,” J. Acoust. Soc. Am. 55, 1100–1103.CrossRefGoogle Scholar
  58. Madsen, P. T., Payne, R., Kristensen, N. U., Wahlber, M., Kerr, I., and Mφhl, B. (2000). “Sperm Whale Sound Production Studied with Ultrasonic Time/Depth Recording Tags,” J. Exp. Biol. 205, 1899–1906.Google Scholar
  59. Madsen, P. T., Payne, R., Kristiansen, N. U., Wahlberg, M., Kerr, I., and Mφhl, B. (2002). “Sperm Whale Sound Production Studied with Ultrasound Time/Depth-recording Tags,” J. Exp. Biol. 205, 1899–1906.PubMedGoogle Scholar
  60. McClellan, M. E. and Small, A. M. (1965). “Time-Separation Pitch Associated with Correlated Noise Burst,” J. Acoust. Soc. Am. 38, 142–143.CrossRefGoogle Scholar
  61. Miller, P. J. O., Johnson, M., Tyack, P. L., and Terray, E. A. (2004). “Swimming gaits, passive drag, and buoyancy of diving sperm whales (Physeter macrocephalus),” J. Exp. Biol., 207, 1953–1967.PubMedCrossRefGoogle Scholar
  62. Mφhl, B. and Andersen, S. (1973). “Echolocation: High-frequency Component in the Click of the Harbor Porpoise (Phocoena ph. L.),” J. Acoust. Soc. Am. 54, 1368–1372.CrossRefGoogle Scholar
  63. Mφhl, B., Larsen, E., and Amundin, M. (1981). “Sperm Whale Size Determination: Outlines of an Acoustic Approach,” in No. 3, Mammals of the Seas, Vol III, FAO Publications, Rome, pp. 327–331 .Google Scholar
  64. Mφhl, B., Surlykke, A., and Miller, L. A. (1990). “High Intensity Narwhal Clicks,” in Sensory Abilities of Cetaceans, J. A. Thomas and R. A. Kastelein, eds. (Plenum, New York), pp. 295–303.Google Scholar
  65. Mφhl, B. and Amundin, M. (1991). “Sperm Whale Clicks: Pulse Interval in Clicks from a 21 m Specimen,” in Sound Production in Odontocetes with Emphasis on the Harbour Porpoise, Phocoena phocoena, Amundin PhD Dissertation, Stockholm Universtiy.Google Scholar
  66. Mφhl, B., Wahlberg, M., Madsen, P. T., Miller, L. A., and Surlykke, A. (2000). “Sperm Whale Clicks: Directionality and Source Level Revisited,” J. Acoust. Soc. Am. 107, 638–648.CrossRefGoogle Scholar
  67. Mφhl, B., Wahlberg, M., and Heerfordt, A. (2001). “A GPS-linked Array of Independent Receiver for Bioacoustics,” J. Acoust. Am. 109, 434–437.CrossRefGoogle Scholar
  68. Mφhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A., and Lund, A. (2003). “The Monpulsed Natue of Sperm Whale Clicks,” J. Acoust. Soc. Am. 114, 1143–1154.CrossRefGoogle Scholar
  69. Moore, P. W. B. and Pawloski, D. A. (1990). “Investigations on the Control of Echolocation Pulses in the Dolphin (Tursiops truncatus),” in Sensory Abilities of Cetaceans Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein, eds. (Plenum, New York), pp. 305–316.Google Scholar
  70. Morozov, B. P., Akapiam, A. E., Burdin, V. I., Zaitseva, K. A., and Solovykh. (1972). “Tracking Frequency of the Location Signals of Dolphins as a Function of Distance to the Target,” Biofiika 17, 139–145.Google Scholar
  71. Murchison, A. E. (1980). “Maximum Detection Range and Range Resolution in Echolocating Bottlenose Porpoise (Tursiops truncatus), in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum, New York), pp. 43–70.Google Scholar
  72. Nachtigall, P. E. (1980). “Odontocete Echolocation Performance on Object Size, Shape and Material,” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum, New York), pp. 71–95.Google Scholar
  73. Nachtigall, P. E., Murchison, A. E., and Au, W. W. L. (1980). “Cylinder and Cube Discrimination by an Echolocating Blindfolded Bottlenose Dolphin,” in Animal Sonar Systems, R. G. Busnel and J. F. Fish, eds. (Plenum, New York), pp. 945–947.Google Scholar
  74. Nachtigall, P. W. and Patterson, S. A. (1981). “Echolocation and Concept Formation by an Atlantic Bottlenosed Dolphin: Sameness-difference and Matching-to-Sample,” (Abstract), Fourth Biennial Conf. Biol. Mar. Mamm., (San Francisco, Ca).Google Scholar
  75. Norris, K. S. and Harvey, G. W. (1974). “Sound Transmission in the Porpoise Head,” J. Acoust. Soc. Am. 56, 659–664.PubMedCrossRefGoogle Scholar
  76. Oliver, G. W. (1978). “Navigation in mazes by a grey seal, Halichoerus grypus (Fabricius).” Behaviour 67, 97–114.CrossRefGoogle Scholar
  77. Pack, A. A. and Herman, L. M. (1995). “Sensory Integration the Bottlenosed Dolphin: Immediate Recognition of Complex Shapes Across the Senses of Echolocation and Vision,” J. Acoust. Soc. Am. 98, 722–733.PubMedCrossRefGoogle Scholar
  78. Penner, R. H. (1988). “Attention and Detection in Dolphin Echolocation,” in Animal Sonar: Processes and Performance, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum, New York), pp. 707–712.Google Scholar
  79. Poulter, T. C. (1963a). “Sonar Signals of the Sea Lion,” Science, 139, 753–755.CrossRefGoogle Scholar
  80. Poulter , T. C. (1963b). “The Sonar of the Sea Lion,” IEEE Trans. Ultrasonics Eng. 10, 109–111.Google Scholar
  81. Poulter, T. C. and Jennings, R. A. (1969). “Sonar Discrimination Ability of the California Sea Lion (Zalophus californianus),” Proc. Calif. Acad. Sci. XXXVI, 381–389.Google Scholar
  82. Renouf, D. and Davis, M. B. (1982). “Evidence that seals may use echolocation,” Nature (London) 300, 635–637.CrossRefGoogle Scholar
  83. Roitblat, H. L., Penner, R. H., and Nachtigall, P. E. (1990). “Matching-to-Sample by an Echolocating Dolphin,” J. Exp. Psychol. Anim. Behav. Proc. 16, 85–95.Google Scholar
  84. Rossbach, K. A. and Herzing, D. L. (1997). “Underwater Observations of Benthic-feeding Bottlenose Dolphins (Tursiops truncatus) near Grand Bahama Island, Bahamas,” Mar. Mamm. Sci. 13, 498–504.CrossRefGoogle Scholar
  85. Schusterman, R. J. (1967). “Perception and Determinants of Underwater Vocalization in the California Sea Lion,” in Animal Sonar Systems:Biology and Bionics, R.-G. Busnel, ed. (Labaoratoire de Physiologie Acoustique, Jouy-en-Josas, France), pp. 535–617.Google Scholar
  86. Schusterman, R. J., Kersting, D. A., and Au, W. W. L. (1980). “Stimulus Control of Echolocation Pulses in (Tursiops truncates),” in Animal Sonar Systems, R. G. Busnel and F. Fish, eds. (Plenum, New York), pp. 981–982.Google Scholar
  87. Scronce, B. L. and Ridgway, S. H. (1980). “Grey Seal (Halichoerus): Echolocation not Demonstrated,” in Animal Sonar Systems, R. G. Busnel and F. Fish, eds. (Plenum, New York), pp. 991–993.Google Scholar
  88. Small, A. M. and McClellan, M. E. (1963). “Pitch Associated with Time Delay Between Two Pulse Trains,” J. Acoust. Soc. Am. 35, 1246–1255.CrossRefGoogle Scholar
  89. Stimpert, A. K., Wiley, D. N., Au, W. W. L., Johnson, M. P., and Arsenault, R. (2007). “Megapclicks: Acoustic Click Trains and Buzzes Produced During Nighttime Foraging of Humpback Whales (Megaptera novaeangliae),” Biol. Lett. 3, 467–470.PubMedCrossRefGoogle Scholar
  90. Thomas, J. A., Stoermer, M., Bowers, C., Anderson, L., and Garver, A. (1988). “Detection Abilities and Signal Characteristics of Echolocating False Killer Whales (Pseudorca crassidens),” in Animal Sonar Processing and Performance, P. E. Nachtigall and P. W. B. Moore, eds. (Plenum, New York), pp. 323–328.Google Scholar
  91. Thomas, J. A. and Turl, C. W. (1990). “Echolocation Characteristics and Range Detection by a False Killer Whale (Pseudorca crassidens),” in Sensory Abilities of Cetaceans Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein, eds. (Plenum, New York), pp. 321–334.Google Scholar
  92. Thompson, P. O., Cummings, W. C., and Ha, S. J. (1986). “Sounds, source levels, and associated behavior of humpback whales, Southeast Alaska,” J. Acoust. Soc. Am. 80, 735–740.PubMedCrossRefGoogle Scholar
  93. Titov, A. A. (1972). “Investigation of Sonic Activity and Phenomenological Characteristics of the Echolocation Analyzer of Black Sea Delphinids,” Candidatorial dissertation, Karadag.Google Scholar
  94. Turl, C. W., Penner, R. H., and Au, W. W. L. (1987). “Comparison of Target Detection Capabilities of the Beluga and Bottlenose Dolphin,” J. Acoust. Soc. Am. 82, 1487–1491.PubMedCrossRefGoogle Scholar
  95. Turl, C. W. and Penner, R. H. (1989). “Differences in Echolocation Click Patterns of the Beluga (Delphinapterus leucas) and the Bottlenose Dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 68, 497–502.CrossRefGoogle Scholar
  96. Turl, C. W., Skaar, D. J., and Au, W. W. L. (1991). “The Echolocation Ability of the Beluga (Delphinapterus leucas) to detect Targets in Clutter,” J. Acoust. Soc. Am. 89, 896–901.CrossRefGoogle Scholar
  97. Urick, R. J. (1983). Principles of Underwater Sound (McGraw-Hill, NY).Google Scholar
  98. Wartzok, D., Schusterman, R. J., and Gailey-Phipps, J. (1984). “Seal echolocation?” Nature (London). 308, 753.CrossRefGoogle Scholar
  99. Watkins, W. A. (1980). “Acoustics and the Behavior of Sperm Whales,” in Animal Sonar Systems, R.-G. Busnel and J. F. Fish, eds. (Plenum, New York), pp. 283–289.Google Scholar
  100. Watkins, W. A., Tyack, P., Moore, K. E., and Bird, J. E. (1987). “The 20-Hz Signals of Finback Whales (Balaenoptera physalus),” J. Acoust. Soc. Am. 82, 1901–1912.PubMedCrossRefGoogle Scholar
  101. Watkins, W. A., Daher, M. A., Fristrup, K. M., and Howald, T. J. (1993). “Sperm Whales Tagged with Transponders and Tracked Underwater by Sonar,” Mar. Mammal Sci. 9, 55–67.CrossRefGoogle Scholar
  102. Wood, F. G. (1964). “Discussion” in Marine Bio-Acoustics Vol II, W. Tavolga, ed. (Pergamon, Oxford, England), pp. 395–396.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  2. 2.Applied Research LaboratoryPenn State UniversityUSA

Personalised recommendations