Advertisement

Mineral Nutrition

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons

Abstract

Next to water, nutrients are the environmental factor that most strongly constrains terrestrial productivity. The productivity of virtually all natural ecosystems, even arid ecosystems, responds to addition of one or more nutrients, indicating widespread nutrient limitation. Species differ widely in their capacity to acquire nutrients from soil. Some plants can take up Fe, P, or other ions from a calcareous soil from which others cannot extract enough nutrients to persist.

Keywords

Root Hair Root Surface White Lupin Salt Gland Cluster Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, M.A. & Pate, J.S. 1992. Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145: 107–113.Google Scholar
  2. Aerts, R. 1990. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84: 391–397.Google Scholar
  3. Aerts, R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J. Ecol. 84: 597–608.Google Scholar
  4. Aerts R, & Chapin III, F.S. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30: 1–67.Google Scholar
  5. Albuzzio, A. & Ferrari, G. 1989. Modulation of the molecular size of humic substances by organic acids of the root exudates. Plant Soil 113: 237–241.Google Scholar
  6. Al-Hiyaly, S.A.K., McNeilly, T., & Bradshaw, A.D. 1990. Theeffect of zinc contamination from electricity pylons. Contrasting patterns of evolution in five grass species. New Phytol. 114: 183–190.Google Scholar
  7. Anderson, C.W.N., Brooks, R.R., Stewart, R.B., & Simcock, R. 1998. Harvesting a crop of gold in plants. Nature 395: 553–554.Google Scholar
  8. Andrews, M. 1986. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 9: 511–519.Google Scholar
  9. Apse, M.P. & Blumwald, E. 2007. Na+ transport in plants. FEBS Lett. 581:2247–2254.PubMedGoogle Scholar
  10. Arianoutsou, M., Rundel, P.W., & Berry, W.L. 1993. Serpentine endemics as biological indicators of soil elemental concentrations. In: Plants as biomonitors, B. Markert (ed). VCH Weinheim, New York, pp. 179–189.Google Scholar
  11. Aslam, M., Travis, R.L., & Rains, D.W. 1996. Evidence for substrate induction of a nitrate efflux system in barley roots. Plant Physiol. 112: 1167–1175.PubMedCentralPubMedGoogle Scholar
  12. Assunção, A.G.L., Schat, H., & Aarts, M. 2003. Thlaspi caerulescens, an attractive an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol. 159:351–360.Google Scholar
  13. Atkin, O.K. 1996. Reassessing the nitrogen relations of arctic plants: a mini-review. Plant Cell Environ. 19: 695–704.Google Scholar
  14. Baker, A.J.M., McGratch, S.P., Reeves, R.D., & Smith, J.A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soil. In: Phytoremediation of contaminated soil and water, N. Terry & G.S. Banuelos (eds). CRC Press Inc., Boca Raton, pp. 85–107.Google Scholar
  15. Ball, M.C. 1988. Ecophysiology of mangroves. Trees 2: 129–142.Google Scholar
  16. Barber, S.A. 1995. Soil nutrient bioavailability, 2nd edition. Wiley, New York.Google Scholar
  17. Barber, S.A. & Ozanne, O.G. 1970. Audioradiographic evidence for the differential effect of four plant species in altering the calcium content of the rhizosphere soil. Soil Sci. Soc. Am. Proc. 34: 635–637.Google Scholar
  18. Barkla, B.J., Zingarelli, L., Blumwald, E., Smith, A.C. 1995. Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum. Plant Physiol. 109: 549–556.PubMedCentralPubMedGoogle Scholar
  19. Barrow, N.J. 1984. Modeling the effect of pH on phosphate sorption by soils. J. Soil Sci. 35: 283–297Google Scholar
  20. Bates, T.R. & Lynch, J.P. 1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ. 19: 529–538.Google Scholar
  21. Bell, R.W. 1997. Diagnosis and prediction of boron deficiency for plant production. Plant Soil 193: 149–168.Google Scholar
  22. Berendse, F. & Aerts, R. 1987. Nitrogen-use efficiency: a biologically meaningful definition? Funct. Ecol. 1: 293-296.Google Scholar
  23. Bhat, K.K.S. & Nye, P.H. 1973 Diffusion of phosphate to plant roots in soil. I. Quantitative autoradiography of the depletion zone. Plant Soil 38: 161–175.Google Scholar
  24. Biddulph, O., Cory, R. & Biddulph, S. 1956. The absorption and translocation of sulfur in red kidney bean. Plant Physiol. 33: 293–300.Google Scholar
  25. Blom-Zandstra, M., Vogelzang, S., & Veen, B. 1998. Sodium fluxes in sweet pepper exposed to varying sodium concentrations. J. Exp. Bot. 49, 1863–1868.Google Scholar
  26. Bloom, A.J., Sukrapanna, S.S., & Warner, R.L. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99: 1294–1301.PubMedCentralPubMedGoogle Scholar
  27. Boerner, R.E.J. 1985. Foliar nutrient dynamics, growth, and nutrient use efficiency of Hamamelis virginiana in three forest microsites. Can. J. Bot. 63: 1476–1481.Google Scholar
  28. Bolan, N.S., Hedley, M.J., & White, R.E. 1991. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134: 53–63.Google Scholar
  29. Boyd, R.S. & Martens, S.N. 1998. Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am. J. Bot. 85:259–265.PubMedGoogle Scholar
  30. Britto, D.T. & Kronzucker, H.J. 2005. Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms. Plant Cell Environ. 28: 1396–1409.Google Scholar
  31. Britto, D.T. & Kronzucker, H.J. 2006. Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci. 11: 529–534.PubMedGoogle Scholar
  32. Broadley, M.R., Bowen, H. C., Cotterill, H.L., Hammond, J.P., Meacham, M.C., Mead, A., & White, P.J. 2003. Variation in the shoot calcium content of angiosperms. J. Exp. Bot. 54: 1431–1446.PubMedGoogle Scholar
  33. Brooks, R.R. (ed.) 1998. Plants that hyperaccumulate heavy metals. Their role in phytoremediation, microbiology, archaeology, mineral exploitation and phytomining. CAB International, Wallingford.Google Scholar
  34. Brooks, R.R., Lee, J., Reeves, R.D. &, Jaffrré, T. 1977.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 7: 49–57.Google Scholar
  35. Brooks, R.R., Chambers, M.F., Nicks, L.J., & Robinson, B.H. 1998. Phytomining. Trends Plant Sci. 3: 359–362.Google Scholar
  36. Brouwer, R. 1962. Nutritive influences on the distribution of dry matter in the plant. Neth. J. Agric. Sci. 10: 399–408.Google Scholar
  37. Brown, G. & Brinkmann, K 1992. Heavy metal tolerance in Festuca ovina L. from contaminated sites in the Eifel Mountains, Germany. Plant Soil 143: 239–247.Google Scholar
  38. Brown, G., Mitchell, D.T., & Stock, W.D. 1984. Atmospheric deposition of phosphorus in a coastal fynbos ecosystem if the south-western Cape, South Africa. J. Ecol. 72:547–551.Google Scholar
  39. Brune, A., Urbach, W., Dietz, K.-J. 1994. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ. 17: 153–162.Google Scholar
  40. Bucher, M. 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173:11–26PubMedGoogle Scholar
  41. Burgess, S.S.O. & Dawson, T.E. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ. 27: 1023–1034.Google Scholar
  42. Cakmak, I., Sari, N., Marschner, H., Ekiz, H., Kalayci, M., Yilmaz, A., & Braun, H.J. 1996. Phytosiderophore release in bread wheat genotypes differing in zinc efficiency. Plant Soil 180: 183–189.Google Scholar
  43. Callahan, D.L., Baker, A.J.M., Kolev, S.D., & Wedd, A.G. 2005. Metal ion ligands in hyperaccumulating plants. J. Biol. Inorg. Chem. 11: 2–12.PubMedGoogle Scholar
  44. Campbell, W.H. 1996. Nitrate reductase biochemistry comes of age. Plant Physiol. 111: 355–361.PubMedCentralPubMedGoogle Scholar
  45. Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G., & Bennett, M.J. 2003. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8: 165–171.PubMedGoogle Scholar
  46. Chang, Y.-C., Ma, J.F., & Matsumoto, H. 1998. Mechanism of Al-induced iron chlorosis in wheat (Triticum aestivum). Al-inhibited biosynthesis and secretion of phytosiderophores. Physiol. Plant. 102: 9–15.Google Scholar
  47. Chaney, R.L, Malik, M., Li, Y.M., Brown, S.L, Angle, J.S., & Baker A.J.M. 1997. Phytoremediation of soil metals. Curr. Opin. Biotech. 8: 279–284.PubMedGoogle Scholar
  48. Chapin III, F.S. 1974. Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology 55: 1180–1198.Google Scholar
  49. Chapin III, F.S. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11: 233–260.Google Scholar
  50. Chapin III, F.S. 1988. Ecological aspects of plant mineral nutrition. Adv. Min. Nutr. 3: 161–191.Google Scholar
  51. Chapin III, F.S. 1991. Effects of multiple environmental stresses on nutrient availability and use. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 67–88.Google Scholar
  52. Chapin III, F.S. & Bloom, A. 1976. Phosphate absorption: adaptation of tundra graminoids to a low temperature, low phosphorus environment. Oikos 26: 111–121.Google Scholar
  53. Chapin III, F.S. & Kedrowski, R.A. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64: 376–391.Google Scholar
  54. Chapin III, F.S. & Moilanen, L. 1991. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72: 709–715.Google Scholar
  55. Chapin III, F.S. & Slack, M. 1979. Effect of defoliation upon root growth, phosphate absorption, and respiration in nutrient-limited tundra graminoids. Oecologia 42: 67–79.Google Scholar
  56. Chapin III, F.S., Johnson, D.A., & McKendrick, J.D. l980. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: Implications for herbivory. J. Ecol. 68: 189-209.Google Scholar
  57. Chapin III, F.S., Fetcher, N., Kielland, K., Everett, K.R., & Linkins, A.E. 1988. Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69: 693–702.Google Scholar
  58. Chapin III, F.S., Moilanen, L., & Kielland, K. 1993. Preferential use of organic nitrogen for growth by non-mycorrhizal arctic sedge. Nature 361: 150–153.Google Scholar
  59. Chardonnens, A.N., Koevoets, P.L.M., Van Zanten, A., Schat, H., & Verkleij, J.A.C. 1999. Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris. Plant Physiol. 120: 779–785.PubMedCentralPubMedGoogle Scholar
  60. Cheeseman, J.M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87: 547–550.PubMedCentralPubMedGoogle Scholar
  61. Cheeseman, J.M. & Hanson, J.B. 1979. Energy-linked potassium influx as related to cell potential in corn roots. Plant Physiol. 64: 842–845.PubMedCentralPubMedGoogle Scholar
  62. Cheng, W. & Johnson, D.W. 1998. Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202: 167–174.Google Scholar
  63. Chiou, T.-J. 2007. The role of microRNAs in sensing nutrient stress. Plant Cell Environ. 30: 323–332.PubMedGoogle Scholar
  64. Cieslinski, G., Van Rees, K.C.J., Szmigielska, A.M., Krishnamurti, G.S.R., & Huang, P.M. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203: 109–117.Google Scholar
  65. Clarkson, D.T. 1981. Nutrient interception and transport by root systems. In: Physiological factors limiting plant productivity, C.B. Johnson (ed). Butterworths, London, pp. 307–314.Google Scholar
  66. Clarkson, D.T. 1996. Root structure and sites of ion uptake. In: Plant roots: the hidden half, 3rd edition, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, Inc., New York, pp. 483–510.Google Scholar
  67. Clarkson, D.T., Lüttge, U., & Kuiper, P.J.C. 1986. Mineral nutrition: sources of nutrients for land plants from outside the pedosphere. Progr. Bot. 48: 80–96.Google Scholar
  68. Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–486.PubMedGoogle Scholar
  69. Clemens, S., Palmgren, M.G., Kramer, U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7, 309–315.PubMedGoogle Scholar
  70. Clement, C.R., Hopper, M.J., Jones, L.H.P., & Leafe, E.L. 1978. The uptake of nitrate by Lolium perenne from flowing nutrient solution. II. Effect of light, defoliation, and relationship to CO2 flux. J. Exp. Bot. 29: 1173–1183.Google Scholar
  71. Clijsters, H. & Van Assche, F. 1985. Inhibition of photosynthesis by heavy metals. Photosynth. Res. 7: 31–40.PubMedGoogle Scholar
  72. Davenport, R.J. & Tester, M. 2000. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol. 122: 823–834.PubMedCentralPubMedGoogle Scholar
  73. Davenport, R.J., Muñoz-Mayor, A., Jha, D., Essah, P.A., Rus, A., & Tester, M. 2007. The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30: 497–507.PubMedGoogle Scholar
  74. De Boer, A.H. 1985. Xylem/symplast ion exchange: Mechanism and function in salt-tolerance and growth. PhD Thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
  75. De Boer, A.H. & Wegner, L.H. 1997. Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48: 441–449.PubMedGoogle Scholar
  76. Degenhardt, J., Larsen, P.B., Howell, S.H., & Kochian, L.V. 1998. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol. 117: 19–27.PubMedCentralPubMedGoogle Scholar
  77. Deiana, S., Gessa, C., Manunza, B., Marchetti, M., & Usai, M. 1992. Mechanism and stoichiometry of the redox reaction between iron (III) and caffeic acid. Plant Soil 145: 287–294.Google Scholar
  78. del Arco, J.M., Escudero, A., & Garrido, M.V. 1991. Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72: 701–708.Google Scholar
  79. Delhaize, E. & Ryan, P.R. 1995. Aluminum toxicity and tolerance in plants. Plant Physiol. 107: 315–321.PubMedCentralPubMedGoogle Scholar
  80. Delhaize, E., Ryan, P.R., & Randall, P.J. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 103: 695–702.PubMedCentralPubMedGoogle Scholar
  81. Delhaize, E., Gruber, B.D., & Ryan P.R. 2007. The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett. 581: 2255–2262.PubMedGoogle Scholar
  82. Demars, B.G. & Boerner, R.E.J. 1997. Foliar nutrient dynamics and resorption in naturalized Lonicera maackii (Caprifoliaceae) populations in Ohio, USA. Am. J. Bot. 84: 112–117.Google Scholar
  83. Demidchik, V., Davenport, R.J. & Tester, M. 2002. Nonselective cation channels in plants. Annu. Rev. Plant Biol. 53: 67–107.PubMedGoogle Scholar
  84. Denton, M.D., Veneklaas, E.J., Freimoser, F.M., & Lambers, H. 2007. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilisation of phosphorus. Plant Cell Environ. 30: 1557–1565.PubMedGoogle Scholar
  85. De Silva, D.L.R., Hetherington, A.M., & Mansfield, T.A. 1996. Where does all the calcium go? Evidence of an important regulatory role for trichomes in two calcicoles. Plant Cell. Environ. 19: 880–886.Google Scholar
  86. Diaz, S.A., Grime, J.P, Harris, J., & McPherson, E. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364: 616–617.Google Scholar
  87. Dong, B., Ryan, P.R., Rengel, Z., & Delhaize, E. 1999. Phosphate uptake in Arabidopsis thaliana: dependence of uptake on the expression of transporter genes and internal phosphate concentration. Plant Cell Environ. 22: 1455–1461.Google Scholar
  88. Drew, M.C. 1975. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75: 479–490.Google Scholar
  89. Drew, M.C. & Saker, L.R. 1978. Nutrient supply and the growth of the seminal root system in barley. III. Compensatory increase in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 29: 435–451.Google Scholar
  90. Drew, M.C., Saker, L.R., & Ashley, T.W. 1973. Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24: 1189–1202.Google Scholar
  91. Driscoll, C.T., Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eagar, C., Lambert, K.F., Likens, G.E., Stoddard, J.L. & Weathers. K.C. 2001. Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects and management strategies. BioSci. 51:180–198.Google Scholar
  92. Duffus, J.H. 2002. “Heavy metals”—a meaningless term? Pure Appl. Chem. 74: 793–807.Google Scholar
  93. Eckstein, R.L., Karlsson, P.S., & Weih, M. 1999. Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytol. 143: 177–189.Google Scholar
  94. Epstein, E. & Hagen, C.E. 1952.A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27: 457–474.PubMedCentralPubMedGoogle Scholar
  95. Erskine, P.D., Stewart, G.R., Schmidt, S., Turnbull, M.H., Unkovich, M.H., & Pate, J.S. 1996. Water availability—a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant Cell Environ. 19: 1149–1159.Google Scholar
  96. Esau, K. 1977. Anatomy of seed plants, 2nd edition. John Wiley & Sons, New York.Google Scholar
  97. Eviner, V.T. & Chapin III, F.S. 1997. Plant-microbial interactions. Nature 385: 26–27.Google Scholar
  98. Föhse, D., Claassen, N., & Jungk, A. 1991. Phosphorus efficiency of plants. Plant Soil 132: 261–272.Google Scholar
  99. Forde, B.G. 2002. Local and long-range signaling pathways regulating plant responses to nitrate. Annu. Rev. Plant Biol. 53: 203–224.PubMedGoogle Scholar
  100. Foulds W. 1993. Nutrient Concentrations of foliage and soil in south-western Australia. New Phytol. 125: 529–546.Google Scholar
  101. Franken, B., Blijjenberg, J., & De Kroon, H. 1999. Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant Soil 211: 179–189.Google Scholar
  102. Frey, B., Keller, C., Zierold, K., & Schulin, R. 2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 23: 675–687.Google Scholar
  103. Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata Y., Sato, K., Katsuhara, M., Takeda, K., & Ma, J.F. 2007. An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 48: 1081–1091.PubMedGoogle Scholar
  104. Gahoonia, T.S. & Nielsen, N.E. 1998. Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil 198: 147–152.Google Scholar
  105. Gahoonia, T.S. & Nielsen, N.E. 1999. Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262: 5–62.Google Scholar
  106. Gahoonia, T.S., Nielsen, N.E., & Lyshede, O.B. 1999. Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant Soil 211: 269–281.Google Scholar
  107. Gardner, W.K. & Boundy, K.A. 1983. The acquisition of phosphorus by Lupinus albus L.: 4. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil 70: 391–402.Google Scholar
  108. Garnett, T.V. & Smethurst, P.J. 1999. Ammonium and nitrate uptake by Eucalyptus nitens: effects of pH and temperature. Plant Soil 214:133–140.Google Scholar
  109. Gerendás J. & Schurr, U. 1999. Physicochemical aspects of ion relations and pH regulation in plants—a quantitative approach. J. Exp. Bot. 50: 1101–1114.Google Scholar
  110. Gersani, M. & Sachs, T. 1992. Development correlations between roots in heterogeneous environments. Plant Cell Environ. 15: 463–469.Google Scholar
  111. Gilbert, G.A., Allan, D.A., & Vance, C.P. 1998. Phosphorus deficiency in white lupin alters root development and metabolism.In: Radical biology: advances and perspectives in the function of plant roots, H.E. Flores, J.P. Lynch, & D.M. Eissenstat (eds). Current topics in plant physiology, Vol. 17. American Society of Plant Physiology, Rockville, MD, pp. 92–103.Google Scholar
  112. Gilbert, G.A., Knight, J.D., Vance, C.P., & Allan, D.L. 1999. Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ. 22: 801–810.Google Scholar
  113. Godbold, D.L., Horst, W.J., Marschner, H., & Collins, J.C. 1983. Effect of high zinc concentrations on root growth and zinc uptake in two ecotypes of Deschampsia caespitosa differing in zinc tolerance. In: Root ecology and its practical application, W. Böhm, L. Kutschera, & E. Lichtentegger (eds). Bundesanstalt für alpenländische Landwirtscaft, Gumpenstein, pp. 165–172.Google Scholar
  114. Gressel, N. & McColl, J.G. 1997. Phosphorus mineralization and organic matter decomposition: A critical review. In: Driven by nature: plant litter quality and decomposition, G. Cadisch & K.E. Giller (eds). CAB International, Wallingford.Google Scholar
  115. Güsewell, S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164: 243–266.Google Scholar
  116. Gutierrez, F.R. & Whitford, W.G. 1987. Chihuahuan desert annuals: importance of water and nitrogen. Ecology 68: 2032–2045.Google Scholar
  117. Hairiah, K., Stulen, I., & Kuiper, P.J.C. 1990. Aluminium tolerance of the velvet beans Mucuna pruriens var. utilis and M. deeringiana. I. Effects of aluminium on growth and mineral composition. In: Plant nutrition—physiology and applications, M.L. Van Beusichem (ed). Kluwer Academic Publishers, Dordrecht, pp. 365–374.Google Scholar
  118. Hall, J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53:1–11.PubMedGoogle Scholar
  119. Harper, S.M., Edwards, D.G., Kerven, G.L., & Asher, C.J. 1995. Effects of organic acid fractions extracted from Eucalyptus camaldulensis leaves on root elongation of maize (Zea mays) in the presence and absence of aluminium. Plant Soil 171: 189–192.Google Scholar
  120. Harrison, A.F. & Helliwell, D.R. 1979. A bioassay for comparing phosphorus availability in soils. J. Appl. Ecol. 16: 497–505.Google Scholar
  121. Hayes, J.E., Simpson, R.J., & Richardson, A.E. 2000. The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220: 165–174.Google Scholar
  122. Hedin, L.O. 2004. Global organization of terrestrial plant-nutrient interactions. Proc. Natl. Acad. Sci. USA 101:10849–10850.PubMedCentralPubMedGoogle Scholar
  123. Hedin, L.O., Granat, L., Likens, G.E., Buishand, A., Galloway, J.N., Butler, T.J., & Rodhe, H. 1994. Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367: 351–354.Google Scholar
  124. Henry, H.A.L. & Jefferies, R.L. 2003. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed arctic salt marsh. J. Ecol 91: 627–636.Google Scholar
  125. Higginbotham, N., Etherton, B., & Foster, R.J. 1967. Mineral ion contents and cell transmembrane electropotentials of pea and oat seedling tissue. Plant Physiol. 42: 37–46.Google Scholar
  126. Hinsinger, P. 1998. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv. Agron. 64: 225–265.Google Scholar
  127. Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248: 43–59.Google Scholar
  128. Hodge, A. 2003. Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol. 157: 303–314.Google Scholar
  129. Hodge, A., Robinson, D., Griffiths, B.S., & Fitter, A.H. 1999. Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 22: 811–820.Google Scholar
  130. Hoffland, E., Findenegg, G.R., & Nelemans, J.A. 1989. Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113: 161–165.Google Scholar
  131. Horst, W.J. & Waschkies, C. 1987. Phosphatversorgerung von Sommerweizen (Triticum aestivum L.) in Mischkultur mit Weiszer Lupine (Lupinus albus L.). Z. Pflanzenernähr. Bodenk. 150: 1–8.Google Scholar
  132. Huang, C.X. & Van Steveninck, R.F.M. 1989. Maintenance of low Cl-concentrations in mesophyll cells of leaf blades of barley seedlings exposed to salt stress. Plant Physiol. 90:1440–1443.PubMedCentralPubMedGoogle Scholar
  133. Huang, N.-C., Chiang, C.-S., Crawford, N.M., & Tsay, Y.F. 1996. Chl1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8: 2183–2191.PubMedCentralPubMedGoogle Scholar
  134. Hübel, F. & Beck, F. 1993. In-situ determination of the P-relations around the primary root of maize with respect to inorganic and phytate-P. Plant Soil 157: 1–9.Google Scholar
  135. Ingestad, T. 1979. Nitrogen stress in birch seedlings II. N, P, Ca and Mg nutrition. Physiol. Plant. 52: 454-466.Google Scholar
  136. Jackson, P.J., Delhaize, E., & Kuske, C.R. 1992. Biosynthesis and metabolic roles of cadystins (γ-EC)nG and their precursors in Datura innoxia. Plant Soil 146: 281–289.Google Scholar
  137. Jenny, H. 1980. The soil resources. Origin and behavior. Springer-Verlag, New York.Google Scholar
  138. Jeschke, W.D. & Pate, J.S. 1995. Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphology. J. Exp. Bot. 46: 895–905.Google Scholar
  139. Johnson, M.N, Reynolds, R.C., & Likens, G.E. 1972. Atmospheric sulfur: Its effect on the chemical weathering of New England. Science 177: 514–515.PubMedGoogle Scholar
  140. Johnson, A.H., Frizano, J., & Vann, D.R. 2003. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135: 487–499.PubMedGoogle Scholar
  141. Jones, D.L. 1998. Organic acids in the rhizosphere—a critical review. Plant Soil 205: 25–44.Google Scholar
  142. Jones, D.L. & Kochian, L.V. 1996. Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots: a role in aluminum toxicity. Plant Cell 7: 1913–1922.Google Scholar
  143. Jones, D.L., Darrah, P.R., & Kochian, L.V. 1996a. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in iron uptake. Plant Soil 180: 57–66.Google Scholar
  144. Jones, D.L., Prabowo, A.M., & Kochian, L.V. 1996b. Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations: The effects of microorganisms on root exudation of malate under Al stress. Plant Soil 182: 239–247.Google Scholar
  145. Jones, D.L., Healey, J.R., Willett, V.B., Farrar, J.F., & Hodge, A. 2005. Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol. Biochem. 37: 413–423.Google Scholar
  146. Kaiser, W.M. & Huber, S.C. 2001. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J. Exp. Bot. 52, 1981–1989.PubMedGoogle Scholar
  147. Kamh, M., Horst, W.J., Amer, F., Mostafa, H., & Maier, P. 1999. Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211: 19–27.Google Scholar
  148. Kamh, M., Abdou, M., Chude, V., Wiesler, F., & Horst, W.J. 2002. Mobilization of phosphorus contributes to positive rotational effects of leguminous cover crops on maize grown on soils from northern Nigeria. J. Plant Nutr. Soil Sci. 165: 566–572.Google Scholar
  149. Keerthisinghe, G., Hocking, P., Ryan, P.R., & Delhaize, E. 1998. Proteoid roots of lupin (Lupinus albus L.): Effect of phosphorus supply on formation and spatial variation in citrate efflux and enzyme activity. Plant Cell Environ. 21: 467–478.Google Scholar
  150. Keltjens, W.G. & Tan, K. 1993. Interactions between aluminum, magnesium and calcium with different monocotyledonous and dicotyledonous plant species. Plant Soil 155/156: 485–488.Google Scholar
  151. Kielland, K. 1994. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen cycling. Ecology 75: 2373–2383.Google Scholar
  152. Kielland, K., McFarland, J., & Olson, K. 2006. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant Soil 288: 297–307.Google Scholar
  153. Killingbeck, K.T. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727.Google Scholar
  154. King, B.J., Siddiqui, N.Y., Ruth, T.J., Warner, R.L., & Glass, A.D.M. 1993. Feedback regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium. Plant Physiol. 102: 1279–1286.PubMedCentralPubMedGoogle Scholar
  155. Kinraide, T.B. 1993. Aluminium enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. Physiol. Plant. 88: 619–625.Google Scholar
  156. Kirk, G.J.D. & Kronzucker, H.J. 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96: 639–646.PubMedGoogle Scholar
  157. Kochian, L. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:237–260.Google Scholar
  158. Kochian, L.V., Piñeros, M.A., & Hoekenga, O.A. 2005. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274: 175–195.Google Scholar
  159. Krämer, U. 2005. Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 16: 133–141.PubMedGoogle Scholar
  160. Krämer, U., Cotter-Howels, J.D., Charnock, J.M., Baker, A.J.M., & Smith, J.A. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638.Google Scholar
  161. Krämer, U., Smith, R.D., Wenzel, W.W., Raskin, I., & Salt, D.E. 1997. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol. 115: 1641–1650.PubMedCentralPubMedGoogle Scholar
  162. Krämer, U., Pickering, I.J., Prince, R.C., Raskin, I., & Salt, D.E.2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 122: 1343–1354.Comment> AU: We have deleted the repeated reference Krämer et al. (2000). Is it OK?</Comment>>PubMedCentralPubMedGoogle Scholar
  163. Krishnamurti, G.S.R., Cieslinnski, G., Huang, P.M., & Van Rees, K.C.J. 1997. Kinetics of cadmium release from soils as influenced by organic acids: Implications in cadmium availability. J. Environ. Qual. 26: 271–277.Google Scholar
  164. Kronzucker, H.J., Siddiqi, M.Y., & Glass, A.D.M. 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385: 59–61.Google Scholar
  165. Kronzucker, H.J., Siddiqi, M.Y. Glass, A.D.M., & Kirk, G.J.D. 1999a. Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol. 119: 1041–1046.Google Scholar
  166. Kronzucker, H.J., Glass, A.D.M. & Siddiqi, M.Y. 1999b. Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes. Plant Physiol. 120: 283–292.Google Scholar
  167. Krupa, Z., Oquist, G., & Huner, N.P.A. 1993. The effect of cadmium on photosynthesis of Phaseolus vulgaris—a fluorescence analysis. Physiol. Plant. 88: 626–630.Google Scholar
  168. Lacan, D. & Durand, N. 1994. Na+ and K+ transport in excised soybean roots. Physiol. Plant. 93: 132–138.Google Scholar
  169. Lambers, H., Shane, M.W., Cramer, M.D., Pearse, S.J., & Veneklaas, E.J. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98: 693–713.PubMedCentralPubMedGoogle Scholar
  170. Lambers, H., Shaver, G., Raven, J.A., & Smith, S.E. 2008. N- and P-acquisition change as soils age. Trends Ecol. Evol., in press.Google Scholar
  171. Larsen, P.B., Degenhardt, J., Tai, C.-Y., Stenzler, L.M., Howell, S.H., & Kochian, L.V. 1998. Aluminum resistance Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol. 117: 7–18.Google Scholar
  172. Lasat, M.M., Baker, A.J.M., & Kochian, L.V. 1996. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol. 112: 1715–1722.PubMedCentralPubMedGoogle Scholar
  173. Lata, J.-C., Degrange, V., Raynaud, X., Maron, P.-A., Lensi, R., & Abbadie, L. 2004. Grass populations control nitrification in savanna soils. Funct. Ecol. 18: 605–611.Google Scholar
  174. LeNoble, M.E. Blevins, D.G., Sharp, R.E., & Cumbie, B.G. 1996a. Prevention of aluminium toxicity with supplemental boron. I. Maintenance of root elongation and cellular structure. Plant Cell Environ. 19: 1132–1142.Google Scholar
  175. LeNoble, M.E. Blevins, D.G., & Miles, R.J. 1996b. Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, high-aluminium subsoil. Plant Cell Environ. 19: 1143–1148.Google Scholar
  176. Li, L., Li, S.-M., Sun, J.-H., Zhou, L.-L., Bao, X.-G., Zhang, H.-G., & Zhang, F.-S. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 104:11192–11196Google Scholar
  177. Lipson, D. & Näsholm, T. 2001. The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128: 305–316PubMedGoogle Scholar
  178. Liu, K.-H. & Tsay,Y.-F. 2003. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22: 1005– 1013PubMedCentralPubMedGoogle Scholar
  179. Lodhi, M.A.K. & Killingbeck, K.T. 1980. Allelopathic inhibition of nitrification and nitrifying bacteria in a ponderosa pine (Pinus ponderosa Dougl.) community. Am. J. Bot. 67: 1423– 1429.Google Scholar
  180. Lolkema, P.C., Doornhof, M., & Ernst, W.H.O. 1986. Interaction between a copper-tolerant and a copper-sensitive population of Silene cucubalus. Physiol. Plant. 67: 654–658.Google Scholar
  181. Loneragan, J.F. 1968. Nutrient requirements of plants. Nature 220: 1307–1308.PubMedGoogle Scholar
  182. Loveless, A.R. 1961. A nutritional interpretation of sclerophylly based on differences in chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 168–184Google Scholar
  183. Ma, J.F. 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 41: 383–390PubMedGoogle Scholar
  184. Ma, J.F. 2005. Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit. Rev. Plant Sci. 24:267–281Google Scholar
  185. Ma, J.F., Hiradata, S., Nomoto, K., Iwashita, T., & Matsumoto, H. 1997. Internal detoxification mechanisms of Al in hydrangea. Identification of Al forms in the leaves. Plant Physiol. 113: 1033–1039PubMedCentralPubMedGoogle Scholar
  186. Ma, J.F., Hiradata, S., & Matsumoto, H. 1998. High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol. 117: 753–759.PubMedCentralGoogle Scholar
  187. Ma, J.F., Ryan, P.R., & Delhaize, E. 2001a. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273–278Google Scholar
  188. Ma, J.F., Goto, S., Tamai, K., & Ichii, M. 2001b. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 127: 1773–1780.Google Scholar
  189. Ma, L., Komar, K.M., Tu, C., Zhang, W., Cai, Y., & Kennelley E.D. 2001c. A fern that hyperaccumulating arsenic. Nature 409: 579Google Scholar
  190. Ma, J.F., Ueno, H., Ueno, D., Rombola, A.D., Iwashita, T. 2003. Characterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra. Plant Soil 256: 131–137.Google Scholar
  191. Ma, J.F., Nagao, S., Huang, C.F., & Nishimura, M. 2005. Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol. 46: 1054– 1061.PubMedGoogle Scholar
  192. Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y., Yano, M. 2006. A silicon transporter in rice. Nature 440: 688–691.PubMedGoogle Scholar
  193. Ma, J.F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., Yano, M. 2007. An efflux transporter of silicon in rice. Nature 448: 209–212.PubMedGoogle Scholar
  194. Macduff, J.H., Hopper, M.J., & Wild, A. 1987. The effect of root temperature on growth and uptake of ammonium and nitrate by Brassica napus L. cv. bien venu in flowing solution culture: II. uptake from solutions containing NH4NO3. J. Exp. Bot. 38: 53–66.Google Scholar
  195. Macklon, A.E.S., Mackie-Dawson, L.A., Sim, A., Shand, C.A., & Lilly, A. 1994. Soil P resources, plant growth and rooting characteristics in nutrient poor upland grasslands. Plant Soil 163: 257–266.Google Scholar
  196. Macfie, S.M. & Taylor, G.J. 1992. The effect of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Physiol. Plant. 85: 467–475.Google Scholar
  197. Magalhaes, J.V., Liu, J., Guimaraes, C.T, Lana, U.G.P., Alves, V.M.C., Wang, Y.-H., Schaffert, R.E., Hoekenga, O.A., Pineros, M.A., Shaff, J.E., Klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N., & Kochian, L.V. 2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics 39: 1156–1161.PubMedGoogle Scholar
  198. Marcum, K.B. & Pessarakli, M. 2006. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars. Crop Sci. 46:2571–2574Google Scholar
  199. Marschner, H. 1983. General introduction to the mineral nutrition of plants. In: Encyclopedia of plant physiology, N.S., Vol 15A, A. Läuchli & R.L. Bieleski (eds). Springer-Verlag, Berlin, pp. 5-60.Google Scholar
  200. Marschner, H. 1991a. Root-induced changes in the availability of micronutrients in the rhizosphere. In: Plant roots: the hidden half, 3rd edition, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York, pp. 503–528.Google Scholar
  201. Marschner, H. 1991b. Mechanisms of adaptation of plants to acid soils. Plant Soil 134: 1–20.Google Scholar
  202. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd Edition. Academic Press, London.Google Scholar
  203. Marschner, H. & Römheld, V. 1996. Root-induced changes in the availability of micronutrients in the rhizosphere. In: Plant roots: the hidden half, 3rd edition, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York, pp. 557–580.Google Scholar
  204. Martinoia, E., Heck, U., & Wiemken, A. 1981. Vacuoles as storage compartments for nitrate in barley leaves. Nature 289: 292–294.Google Scholar
  205. McKane, R.B., Johnson, L.C., Shaver, G.R., Nadelhoffer, K.J., Rastetter, E.B., Fry, B., Giblin, A.E., Kielland, K., Kwiatkowski, B.L., Laundre, J.A. & Murray, G. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415: 68–71.PubMedGoogle Scholar
  206. McNaughton, S.J., & Chapin III, F.S. 1985. Effects of phosphorus nutrition and defoliation on C4 graminoids from the Serengeti Plains. Ecology 66: 1617–1629.Google Scholar
  207. McNeilly, T. 1968. Evolution in closely adjacent plant populations III. Agrostis tenuis on a small copper mine. Heredity 23: 99–108.Google Scholar
  208. Meerts, P. 1997. Foliar macronutrient concentrations of forest understorey species in relation to Ellenberg’s indices and potential relative growth rate. Plant Soil 189: 257–265.Google Scholar
  209. Meharg, A.A. & Macnair, M.R. 1992. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 43: 519–524.Google Scholar
  210. Miller, A.J. & Cramer, M.D. 2005. Root nitrogen acquisition and assimilation. Plant Soil 274: 1–36.Google Scholar
  211. Min, X., Siddiqi, M.Y., Guy, R.D., Glass, A.D.M., & Kronzucker, H.J. 1999. A comparative study of fluxes and compartmentation of nitrate and ammonium in early-successional tree species. Plant Cell Environ. 22: 821–830.Google Scholar
  212. Mistrik, I. & Ullrich, C.I. 1996. Mechanism of anion uptake in plant roots: Quantitative evaluation of H+/NO3 and H+/H2PO4 stoichiometries. Plant Physiol. Biochem. 34: 621–627.Google Scholar
  213. Morikawa, H., Higaki, A., Nohno, M., Takahashi, M., Kamada, M., Nakata, M., Toyohara, G., Okamura, Y., Matsui, K., Kitani, S., Fujita, K., Irifune, K., & Goshima, N. 1998. More than 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant Cell Environ. 21: 180–190.Google Scholar
  214. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239–250.PubMedGoogle Scholar
  215. Munns, R. 2005. Genes and salt tolerance: bringing them together New Phytol. 167: 645–663.PubMedGoogle Scholar
  216. Murphy, A. & Taiz, L. 1995. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol. 109: 945–954.Google Scholar
  217. Nair, V.D. & Prenzel, J. 1978. Calculations of equilibrium concentration of mono- and polynuclear hydroxyaluminium species at different pH and total aluminium concentrations. Z. Pflanzenernähr. Bodenk. 141: 741–751.Google Scholar
  218. Nambiar, I.K.S. 1987. Do nutrients retranslocate from fine roots? Can. J. For. Res. 17: 913–918.Google Scholar
  219. Nambiar, I.K.S. & Fife, D.N. 1987. Growth and nutrient retranslocation in needles of radiata pine in relation to nitrogen supply. Ann. Bot. 60: 147–156.Google Scholar
  220. Neumann, G. & Römheld, V. 1999. Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211: 121–130.Google Scholar
  221. Neumann, G., Massonneau, A., Langlade, N., Dinkelaker, B., Hengeler, C., Römheld, V., & Martinoia, E. 2000. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.) Ann. Bot. 85: 909–919.Google Scholar
  222. Nian, H., Yang, Z.M., Ahn, S.J., Cheng, Z.J., & Matsumoto, H. 2002. A comparative study on the aluminium- and copper-induced organic acid exudation from wheat roots. Physiol. Plant. 116: 328–335.Google Scholar
  223. Niklas, K.J., Owens, T., Reich, P.B., & Cobb, E.D. 2005. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 8: 636–642.Google Scholar
  224. Nuruzzaman, M., Lambers, H., Bolland, M.D.A., & Veneklaas, E.J. 2005. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 271: 175–187.Google Scholar
  225. Nye, P.H. & Tinker, P.B. 1977. Solute movement in the soil-root system. Blackwell, Oxford.Google Scholar
  226. Ohwaki, Y. & Sugahara, K. 1997. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinumL.). Plant Soil 189: 49–55.Google Scholar
  227. Osaki, M., Yamada, S., Ishizawa, T, Watanabe, T. & Shinano, T. 2003a. Mineral characteristics of leaves of plants from different phylogeny grown in various soil types in the temperate region. Plant Foods Human Nutr. 58: 117–137.Google Scholar
  228. Osaki, M., Yamada, S., Ishizawa, T, Watanabe, T. & Shinano, T. 2003b. Mineral characteristics of the leaves of 166 plant species with different phylogeny in the temperate region. Plant Foods Human Nutr. 58: 139–152.Google Scholar
  229. Parfitt, R.L. 1979. The availability of P from phosphate-goethite bridging complexes. Desorption and uptake by ryegrass. Plant Soil 53: 55–65.Google Scholar
  230. Pate, J.S. Verboom, W.H., & Galloway, P.D. 2001. Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust. J. Bot. 49:529–560.Google Scholar
  231. Pearse, S.J., Veneklaas, E.J., Cawthray, G.R., Bolland, M.D.A. & Lambers, H. 2006. Carboxylate release and other root traits of wheat, canola and 11 grain legume species as affected by P status. Plant Soil 288: 127–139.Google Scholar
  232. Pérez Corona, M.E., Van der Klundert, I., & Verhoeven, J.T.A. 1996. Availability of organic and inorganic phosphorus compounds as phosphorus sources for Carex species. New Phytol. 133: 225–231.Google Scholar
  233. Pons, T.L., Van der Werf, A., & Lambers, H. 1994. Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species: possible explanations for observed differences. In: A Whole-plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, The Hague, pp. 61–77.Google Scholar
  234. Poorter, H., Remkes, C., & Lambers, H. 1990. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol 94: 621–627.PubMedCentralPubMedGoogle Scholar
  235. Popp, M. 1995. Salt resistance in herbaceous halophytes and mangroves. Progr. Bot. 56: 416–429.Google Scholar
  236. Poschenrieder, C., Tolra, R., & Barceló, J. 2006. Can metals defend plants against biotic stress? Trends Plant Sci. 11:88–295.Google Scholar
  237. Prenzel, J. 1979. Mass flow to the root system and mineral uptake of a beech stand calculated from 3-year field data. Plant Soil 51: 39–49.Google Scholar
  238. Przybylowicz, J., Pineda, C.A., Prozesky, V.M., &. Mesjasz-Przybylowicz, J. 1995. Investigation of Ni hyperaccumulation by true elemental imaging. Nucl. Instr. Meth. B104: 176–181.Google Scholar
  239. Purnell, H.M. 1960. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust. J. Bot. 8: 38–50.Google Scholar
  240. Raaimakers, T.H.M.J. 1995. Growth of tropical rainforest trees as dependent on P-availability. Tree saplings differing in regeneration strategy and their adaptations to a low phosphorus environment in Guyana. PhD Thesis, Utrecht University, Utrecht, the Netherlands.Google Scholar
  241. Rauser, W.E. 1995. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol. 109: 1141–1149.PubMedCentralPubMedGoogle Scholar
  242. Rawat, S.R., Silim, S.N., Kronzucker, H.J. Siddiqi, M.Y., & Glass, A.D.M. 1999. AtAMT1 gene expression and NH4 + uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J. 19: 143–152.PubMedGoogle Scholar
  243. Read, J., Sanson, G.D., Garine-Wichatitsky, M.d., & Jaffre, T. 2006. Sclerophylly in two contrasting tropical environments: low nutrients vs. low rainfall. Am. J. Bot. 93: 1601–1614.PubMedGoogle Scholar
  244. Reddell, P., Yun, Y., & Shipton, W.A. 1997. Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Aust. J. Bot. 45: 41–51.Google Scholar
  245. Reeves, R.D. & Baker, A.J.M. 2000. Metal-accumulating plants. In: Phytoremediation of toxic metals: using plants to clean up the environment, I. Raskin & B.D. Ensley (eds). John Wiley & Sons, New York, pp. 193–229.Google Scholar
  246. Reich, P.B. & Oleksyn, J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 101: 11001–11006.PubMedCentralPubMedGoogle Scholar
  247. Reich, P.B., Walters, M.B., & Ellsworth, D.S. 1992. Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62: 365–392.Google Scholar
  248. Reich, P.B., Ellsworth, D.S., & Uhl, C. 1995. Leaf carbon and nutrient assimilation and conservation in species of differing succession status in an oligotrophic Amazonian forest. Funct. Ecol. 9: 65–76.Google Scholar
  249. Remans, T., Nacry, P., Pervent, M., Filleur, S., Diatloff, E., Mounier, E., Tillard, P., Forde, B.G., & Gojon, A. 2006. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl. Acad. Sci. USA 103: 19206–19211.PubMedCentralPubMedGoogle Scholar
  250. Rengel, Z. & Römheld, V. 2000. Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency. Plant Soil 222: 25–34.Google Scholar
  251. Reuss, J.O. & Johnson, D.W. 1986. Acid deposition and the acidification of soils and waters. Springer-Verlag, New York.Google Scholar
  252. Reynolds, H.L. & D’Antonio, C. 1996. The ecological significance of plasticity in root weight ratio in response to nitrogen. Plant Soil 185: 75–97.Google Scholar
  253. Richardson, A.E. 1994. Soil microorganisms and phosphorus availability. In: Soil biota. Management in sustainable farming systems, C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta, & P.R. Grace (eds). CSIRO, East Melbourne, pp. 50–62.Google Scholar
  254. Richardson, A.E., Hadobas, P.A., & Hayes, J.E. 2000. Acid phosphomonoesterases andphytase activities of wheat (Triticum aesticum) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ. 23: 397–405.Google Scholar
  255. Richardson, S.J. Peltzer, D.A., Allen, R.B., McGlone, M.S., & Parfitt, R.L. 2004. Oecologia 139:267–276.Google Scholar
  256. Richardson, S.J., Peltzer, D.A., Allen, R.B., & McGlone, M.S. 2005. Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25.Google Scholar
  257. Richardson, A.E., George, T.S., Jakobsen, I., & Simpson, R.J. 2007. Plant utilization of inositol phosphates. In: Inositol phosphates: linking agriculture and the environment, B.L. Turner, A.E. Richardson, & E.J Mullaney (eds). CABI Publishing, Wallingford. pp. 242–260.Google Scholar
  258. Roberts, S.K. 2006. Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol. 169: 647–666.PubMedGoogle Scholar
  259. Robinson, D. 1994. The responses of plants to non-uniform supplies of nutrients. New Phytol. 127: 635–674.Google Scholar
  260. Robinson, D. 1996. Variation, co-ordination and compensation in root systems in relation to soil variability. Plant Soil 187: 57–66.Google Scholar
  261. Robinson, N.J., Tommey, A.M., Kuske, C., & Jackson, P.J. 1993. Plant metallothioneins. Biochem. J. 295: 1-–10.PubMedCentralPubMedGoogle Scholar
  262. Robinson, B.H., Leblanc, M., Petit, D., Brooks, R.B., Kirkman, J.H., & Gregg, P.E.H. 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated spoils. Plant Soil 203: 47–56.Google Scholar
  263. Robinson, B.H., Brooks, R.R., & Clothier, B.E. 1999.Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann. Bot. 84: 689–694.Google Scholar
  264. Römer, W., Kang, D.-K., Egle, K., Gerke, J., & Keller, H. 2000. The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum Lam. J. Plant Nutr. Soil Sci. 163: 623–628.Google Scholar
  265. Römheld, V. 1987. Different strategies for iron acquisition in higher plants. Physiol. Plant. 70: 231–234.Google Scholar
  266. Ryan, P.R. & Kochian, L.V. 1993. Aluminum differentially inhibits calcium uptake into the root apex of near-isogenic lines of wheat. A possible mechanism of toxicity. Plant Physiol. 102: 975–982.PubMedCentralPubMedGoogle Scholar
  267. Ryan, P.R., Kinraide, T.B., & Kochian, L.V. 1994. Al3+–Ca2+ interactions in aluminium rhizotoxicity. I. Inhibition of root growth is not caused by reduction of calcium uptake. Planta 192: 98–103.Google Scholar
  268. Ryan, P.R., Delhaize, E., & Randall, P.J. 1995. Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust. J. Plant Physiol. 22: 531–536.Google Scholar
  269. Ryan, P.R., Reid, R.J., & Smith, F.A. 1997. Direct evaluation of the Ca2+-displacement hypothesis for Al toxicity. Plant Physiol. 113: 1351–1357.PubMedCentralPubMedGoogle Scholar
  270. Sakaguchi, T., Nishizawa, N.K., Nakanishi, H., Yoshimura, E., & Mori, S. 1999. The role of potassium in the secretion of mugineic acids family phytosiderophores fro iron-deficient barley roots. Plant Soil 215: 221–227.Google Scholar
  271. Salt, D.E. & Rauser, W.E. 1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107: 1293–1301.PubMedCentralPubMedGoogle Scholar
  272. Salt, D.E., Prince, R.C., Pickering, I.J., & Raskin, I. 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109: 1427–1433.PubMedCentralPubMedGoogle Scholar
  273. Salt, D.E., Kato, N., Krämer., U., Smith, R.D., & Raskin, I. 2000. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and non-accumulator species of Thlaspi. In: Phytoremediation of contaminated soil and water, N. Terry & G.S. Bañuelos (eds). CRC Press, Boca Raton, pp 191–202.Google Scholar
  274. Sardans, J., Peñuelas, J., & Estiarte, M. 2007. Seasonal patterns of root-surface phosphatase activities in a Mediterranean shrubland. Responses to experimental warming and drought. Biol. Fertil. Soils 43: 779–786.Google Scholar
  275. Scheurwater, I., Clarkson, D.T., Purves, J., Van Rijt, G., Saker, L., Welschen, R., & Lambers, H. 1999. Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow-growing grass species. Plant Soil 215: 123–134.Google Scholar
  276. Schimel, J. P. & Bennett, J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85: 591–602.Google Scholar
  277. Schirmer, U. & Breckle, S.-W. 1982. The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species). In: Tasks for vegetation science, Vol. 2, D.N. Sen & K.S. Rajpurokit (eds). Dr W. Junk Publishers, The Hague, pp. 215–231.Google Scholar
  278. Schmidt, W. 2003. Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci. 8:188–193.PubMedGoogle Scholar
  279. Schmidt, S. & Stewart, G.R. 1999. Glycine metabolism by plant roots and its occurrence in Australian plant communities. Aust. J. Plant Physiol. 26: 253–264.Google Scholar
  280. Scholz, G., Becker, R., Pich, A., & Stephan, U.W. 1992. Nicotinamine—a common constituent of strategies I and II of iron acquisition by plants: a review. J. Plant Nutr. 15: 1647–1665.Google Scholar
  281. Shane, M.W. & Lambers, H. 2005. Cluster roots: A curiosity in context. Plant Soil 274:99–123.Google Scholar
  282. Shane, M.W. & Lambers, H. 2006. Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: a Proteaceae with resistance for developing symptoms of “P toxicity”. J. Exp. Bot. 57: 413–423.PubMedGoogle Scholar
  283. Shane, M.W. McCully, M., & Lambers, H. 2004a. Tissue and cellular phosphorus storage during development of “phosphorus toxicity” in Hakea prostrata (Proteaceae). J. Exp. Bot. 55: 1033–1044.Google Scholar
  284. Shane, M.W., Szota, C. & Lambers, H. 2004b. A root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae). Plant Cell Environ. 27: 991–1004.Google Scholar
  285. Shane, M.W., Cramer, M.D., Funayama-Noguchi, S., Millar, A.H., Day, D.A., & Lambers, H. 2004c. Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea: expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol. 135: 549–560.Google Scholar
  286. Shane, M.W., Dixon, K.W. & Lambers, H. 2005. The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of P supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol. 165: 887–898.PubMedGoogle Scholar
  287. Sharples, J.M., Meharg, A.M., Chambers, S.M., & Cairney, J.W.G. 2000. Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol. 124: 1327–1334.PubMedCentralPubMedGoogle Scholar
  288. Shaver, G.R. & Chapin III, F.S. 1991. Production:biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr. 61: 1–31.Google Scholar
  289. Shriner, D.S. and & Johnston Jr., J.W. 1985. Acid rain interactions with leaf surfaces: a review. In: Acid deposition: environmental, economic, and policy issues, D.D. Adams & W.P Page (eds). Plenum Publishing Corporation, New York, pp. 241–253.Google Scholar
  290. Siddiqi, M.Y., Glass, A.D.M., & Ruth, T.J., & Rufty, T.W. 1990. Studies of the nitrate uptake system in barley. I. Kinetics of 13NO3 influx. Plant Physiol. 93: 1426–1432.PubMedCentralPubMedGoogle Scholar
  291. Siddiqi, M.Y., Glass, A.D.M., & Ruth, T.J. 1991. Studies of the uptake of nitrate in barley. III. Compartmentation of NO3 . J. Exp. Bot. 42: 1455–1463.Google Scholar
  292. Silberbush, M. & Barber, S.A. 1983. Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model. Plant Soil 74: 93–100.Google Scholar
  293. Silva, I.R., Smyth, T.J., Israel, D.W., Raper, C.D. & Rufty, T.W. 2001a. Altered aluminum inhibition of soybean root elongation in the presence of magnesium. Plant Soil 230: 223–230.Google Scholar
  294. Silva, I.R., Smyth, T.J., Israel, D.W., & Rufty, T.W. 2001b. Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots. Plant Cell Physiol. 42: 546–554.Google Scholar
  295. Smart, C.J., Garvin, D.F., Prince, J.P., Lucas, W.J., & Kochian, L.V. 1996. The molecular basis of potassium nutrition. Plant Soil 187: 81–89.Google Scholar
  296. Smirnoff, N., Todd, P., & Stewart, G.R. 1984. The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot. 54: 363–374.Google Scholar
  297. Soderberg, K. & Compton, J. 2007. Dust as a nutrient source for fynbos ecosystems, South Africa. Ecosystems 10: 550–561.Google Scholar
  298. Sprent, J.I. 1999. Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspect. Plant Ecol. Evol. Syst. 2: 149–162.Google Scholar
  299. Staal, M., Maathuis, F.J.M., Elzenga, T.J.M., Overbeek, J.H.M., & Prins, H.B.A. 1991. Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt-sensitive Plantago media. Physiol. Plant. 82: 179–184.Google Scholar
  300. Stark, J.M. & Hart, S.C. 1997. High rates of nitrification and nitrate turnover in undisturbed coniferous ecosystems. Nature 385: 61–64.</REF>Google Scholar
  301. Sterner, R.W. and J.J. Elser. 2002. Ecological Stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.Google Scholar
  302. Sunarpi, Horie, T., Motado, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.-Y., Hattori, K., Osumi, M., Yamagami, M., Schroeder, J., & Uozmi, N. 2005. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44: 928–938.PubMedGoogle Scholar
  303. Szczerba, M.W., Britto, D.T., & Kronzucker, H.J. 2006a. Rapid, futile K+ cycling and pool-size define low-affinity potassium transport in barley. Plant Physiol. 141: 1494–1507.Google Scholar
  304. Szczerba M W, Britto D T and Kronzucker H J 2006b. The face value of ion fluxes: the challenge of determining influx in the low-affinity transport range. J. Exp. Bot. 57: 3293–3300.Google Scholar
  305. Tarafdar, J.C. & Jungk, A. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fert. Soils 3: 199–204.Google Scholar
  306. Tester, M. & Davenport, R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91: 503–527.PubMedGoogle Scholar
  307. Thomas, W.A. & Grigal, D.F. 1976. Phosphorus conservation by evergreenness of mountain laurel. Oikos 27: 19–26.Google Scholar
  308. Tilton, D.L. 1977. Seasonal growth and foliar nutrients of Larix laricina in three wetland ecosystems. Can. J. Bot. 55:1291–1298.Google Scholar
  309. Tinker, P.B.H. & Nye, P.H. 2000. Solute transport in the rhizosphere. Oxford University Press, Oxford.Google Scholar
  310. Touraine, B., Clarkson, D.T., & Muller, B. 1994. Regulation of nitrate uptake at the whole plant level. In: A whole-plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, The Hague pp. 11–30.Google Scholar
  311. Trueman, L.J., Richardson, A., & Forde, B.G. 1996a. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene 175: 223–231.Google Scholar
  312. Trueman, L.J., Onyeocha, I., & Forde, B.G. 1996b. Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiol. Biochem. 34: 621–627.Google Scholar
  313. Tukey Jr., H.B. 1970. The leaching of substances from plants. Annu. Rev. Plant Physiol. 21: 305–324.Google Scholar
  314. Turner B.L. (2006) Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Inositol phosphates: linking agriculture and the environment, B.L. Turner, A.E. Richardson, & E.J Mullaney (eds). CABI Publishing, Wallingford, pp. 186–206.Google Scholar
  315. Turner, B.L. & Richardson, A.E. 2004. Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci. Soc. Am. J. 68: 802–808.Google Scholar
  316. Ueno, D., Rombola, A.D., Iwashita, T., Nomoto, K., Ma, J.F. 2007. Identification of two novel phytosiderophores secreted by perennial grasses. New Phytol. 174: 304–310.PubMedGoogle Scholar
  317. Van der Werf, A., Visser, A.J., Schieving, F., & Lambers, H. 1993. Evidence for optimal partitioning of biomass and nitrogen at a range of nitrogen availabilities for a fast- and slow-growing species. Funct. Ecol. 7: 63–74.Google Scholar
  318. Van Hoof, N.A.L.M, Koevoets, P.L.M., Hakvoort, H.W.J., Ten Bookum, W. M., Schat, H., Verkleij, J.A.C. & Ernst, W.H.O. 2001. Enhanced ATP-dependent copper efflux across the root cell plasma membrane in copper-tolerant Silene vulgaris. Physiol. Plant. 113: 225–232.PubMedGoogle Scholar
  319. Van Vuuren, M.M.I., Robinson, D., & Griffiths, B.S. 1996. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in the soil. Plant Soil 178: 185–192.Google Scholar
  320. Verry, E.S. & Timmons, D.R. 1976. Elements in leaves of a trembling aspen clone by crown position and season. Can. J. For. Res. 6: 436–440.Google Scholar
  321. Vitousek, P. 1982. Nutrient cycling and nutrient use efficiency. Am. Nat. 119: 553–572.Google Scholar
  322. Vitousek, P.M. 2004. Nutrient cycling and limitation: Hawaii as a model system. Princeton University Press, Princeton.Google Scholar
  323. Von Ballmoos, P., Amman, M., Egger, A., Suter, M., & Brunold, C. 1998. NO2-induced nitrate reductase activity in needles of Norway spruce (Picea abies) under laboratory and field conditions. Physiol. Plant. 102: 596–604.Google Scholar
  324. Vögeli-Lange, R. & Wagner, G.J. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92: 1086–1093.PubMedCentralPubMedGoogle Scholar
  325. Walker, T.W. & Syers, J.K. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1–9.Google Scholar
  326. Walker, C.D., Graham, R.D., Madison, J.T., Cary, E.E., & Welch, R.M. 1995. Effects of Ni deficiency on some nitrogen metabolites in cowpea (Vigna unguiculata L. Walp). Plant Physiol. 79: 474–479.Google Scholar
  327. Wang, B.L., Shen, J.B., Zhang, W.H., Zhang, F.S., & Neumann, G. 2007. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol. 176: 581–589.PubMedGoogle Scholar
  328. Warren, C.R. 2006. Potential organic and inorganic N uptake by six Eucalyptusspecies. Funct. Plant Biol. 33:653–660.Google Scholar
  329. Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33: 125–159.Google Scholar
  330. White, P.J. 1999. The molecular mechanism of sodium influx to root cells. Trends Plant Sci. 4: 277–278.Google Scholar
  331. Wiehe, W. & Breckle, S.-W. 1990. The ontogenesis of the salt glands of Limonium(Plumbaginaceae). Bot. Acta 103:107–110.Google Scholar
  332. Wolt, J.D. 1994. Soil solution chemistry. John Wiley & Sons, New York.Google Scholar
  333. Woodward, R.A., Harper, K.T., & Tiedemann, A.R. 1984. An ecological consideration of the significance of cation-exchange capacity of roots of some Utah range plants. Plant Soil 79: 169–180.Google Scholar
  334. Wright, I.J. & Westoby, M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct. Ecol. 17: 10–19.Google Scholar
  335. Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J. Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., & Villar, R. 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.PubMedGoogle Scholar
  336. Yanai, J., Robinson, D., Young, I.M., Kyuma, K., & Kosaki, T. 1998. Effects of the chemical form of inorganic nitrogen fertilizers on the dynamics of the soil solution composition and on nutrient uptake by wheat. Plant Soil 202: 263–270.Google Scholar
  337. Yang, Y.-Y., Jung, J.-Y., Song, W.-Y, Suh, H.-S., & Lee, Y. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 124: 1019– 1026.PubMedCentralPubMedGoogle Scholar
  338. Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., & Randlett, D.A. 1993. Elevated CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151: 105–117.Google Scholar
  339. Zerihun, A., McKenzie, B.A., & Morton, J.D. 1998. Photosynthate costs associated with the utilization of different nitrogen-forms: influence on the carbon balance of plants and shoot-root biomass partitioning. New Phytol. 138:1–11.Google Scholar
  340. Zhang, H. & Forde, B.G. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279: 407–409.PubMedGoogle Scholar
  341. Zhang, H. & Forde, B.G. 2000. Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51: 51–59.PubMedGoogle Scholar
  342. Zhang, H., Jennings, A., Barlow, P.W., & Forde, B.G. 1999. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA 96: 6259–62534.Google Scholar
  343. Zhang, W.-H., Ryan, P.R., & Tyerman, S.D. 2004. Citrate-permeable channels in the plasma membrane of cluster roots from white lupin. Plant Physiol. 136: 3771–3783.PubMedCentralPubMedGoogle Scholar
  344. Zhao, F.J., Lombi, E., Breedon, T., & McGrath, S.P. 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ. 5: 507–514.Google Scholar
  345. Zheng, S.J., Ma, J.F., & Matsumoto, H. 1998. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol. 117: 745–751.PubMedCentralGoogle Scholar
  346. Zohlen, A. & Tyler, G. 1997. Differences in iron nutrition of two calcifuges, Carex pilulifera L. and Veronica officinalisL. Ann. Bot. 80: 553–559.Google Scholar
  347. Zohlen, A. & Tyler, G. 2000. Immobilisation of tissue iron on calcareous soil—differences between calcicole and calcifuge plants. Oikos 89: 95–106.Google Scholar
  348. Zohlen, A. & Tyler, G. 2004. Soluble inorganic tissue phosphorus and calcicole–calcifuge behaviour of plants. Ann. Bot. 94:427–432.PubMedGoogle Scholar
  349. Zuo, Y., Zhang, F., Li, X., & Cao, Y. 2000. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 220:13–25.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations