Effects of Radiation and Temperature

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


In Chapter 4A on the plant’s energy balance, we discussed traits that reflect radiation or otherwise avoid high radiation loads in high-light environments. Many plants lack these adaptations and absorb potentially damaging levels of radiation.


Cold Tolerance Leaf Temperature Xanthophyll Cycle Frost Tolerance Chilling Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Apel, K. & Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399.PubMedCrossRefGoogle Scholar
  2. Bartels, D. & Nelson, D. 1994. Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ. 17: 659–667.CrossRefGoogle Scholar
  3. Burchard, P., Bilger, W., & Weissenbock, G. 2000. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 23: 1373–1380.CrossRefGoogle Scholar
  4. Caldwell, M.M. 1981. Plant responses to solar ultraviolet radiation. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 169–197.Google Scholar
  5. Crowe, J.H., Carpenter, J.F., Crowe, L.M., & Anchordoguy, T.J. 1990. Are freezing and dehydration similar stress factors? A comparison of modes of interaction of different biomolecules. Cryobiol. 27: 219–231.CrossRefGoogle Scholar
  6. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., & Sarhan, F. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623–638.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Day, T.A. 1993. Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants. Oecologia 95: 542–550.Google Scholar
  8. Day, T.A., Martin, G., & Vogelmann, T.C. 1993. Penetration of UV-B radiation in foliage: evidence that he epidermis behaves as a non-uniform filter. Plant Cell Environ. 16: 735–741.CrossRefGoogle Scholar
  9. Day, T.A., Howells, B.W., & Rice, W.J. 1994. Ultraviolet absorption and epidermal-transmittance in foliage. Physiol. Plant. 92: 207–218.CrossRefGoogle Scholar
  10. Doxey, A.C., Yaish, M.W., Griffith, M., & McConkey, B.J. 2006, Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nature 24: 852–855.Google Scholar
  11. Frohnmeyer, H. & Staiger, D. 2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 133: 1420–1428.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Griffith, M. & Yaish, M.W.F. 2004. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 9: 399–405.PubMedCrossRefGoogle Scholar
  13. Griffith, M., Antikainen, M., Hon, W.-C., Pihakaski-Maunschbach, K., Yu, X., Chun, J.U., & Yang, D.S. 1997. Antifreeze proteins in winter rye. Physiol. Plant. 100: 327–332.CrossRefGoogle Scholar
  14. Henkov, L., Strid, A., Berglund, T., Rydstrom, J., & Ohlsson, A.B. 1996. Alteration of gene expression in Pisum sativum tissue cultures caused by the free radical-generating agent 2,2'-azobis (2-aminopropane) dihydrochloride. Physiol. Plant. 96: 6–12.CrossRefGoogle Scholar
  15. Hidema, J., Kumagai, T., Sutherland, J.C., & Sutherland, B.M. 1997. Ultraviolet B-sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol. 113: 39–44.PubMedCentralPubMedGoogle Scholar
  16. Hincha, D.K., Meins, F., & Schmidt, J.M. 1997. β-1,3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol. 114: 1077–1083.PubMedCentralPubMedGoogle Scholar
  17. Hon, W.-C., Griffith, M., Chong, P., & Yang, D.S.C. 1994. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol. 104: 971–980.PubMedCentralPubMedGoogle Scholar
  18. Irigoyen, J.J., Perez de Juan, J., & Sanchez-Diaz, M. 1996. Drought enhances chilling tolerance in a chilling-sensitive maize (Zea mays) variety. New Phytol. 134: 53–59.CrossRefGoogle Scholar
  19. Ishitani, M., Xiong, L., Stevenson, B., Zhu, J.-K. 1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9: 1935–1949.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Karabourniotis, G., Papadopoulos, K., Papamarkou, M & Manetas, Y. 1992. Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiol. Plant. 86: 414–418.CrossRefGoogle Scholar
  21. Karabourniotis, G., Kofidis, G., Fasseas, C., Liakoura, V., & Drossopoulos, I. 1998. Polyphenol deposition in leaf hairs of Olea europaea (Oleaceae) and Quercus ilex (Fagaceae). Am. J. Bot. 85: 1007–1012.PubMedCrossRefGoogle Scholar
  22. Körner, C. & Diemer, M. 1987. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct. Ecol. 1: 179–194.CrossRefGoogle Scholar
  23. Lerday, M. & Keller, M. 1997. Controls on isoprene emission from trees in a subtropical dry forest. Plant Cell Environ. 20: 569–578.CrossRefGoogle Scholar
  24. Lichtenthaler, H.K. 2007. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 92: 163–179.PubMedCrossRefGoogle Scholar
  25. Loreto, F. & Velikova, V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127: 1781–1787.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Loreto, F., Förster, A., Dürr, M., Csiky, O., & Seufert, G. 1998. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ. 21: 101–107.CrossRefGoogle Scholar
  27. Marentes, E., Griffiths, M., Mlynarz, A., & Brush, R.A. 1993. Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol. Plant. 87: 499–507.CrossRefGoogle Scholar
  28. Martz, F., Sutinen, M.-L., Derome, K., Wingsle, G., Julkunen-Tiito, R., & Turunen, M. 2007. Effects of ultraviolet (UV) exclusion on the seasonal concentration of photosynthetic and UV-screening pigments in Scots pine needles. Global Chanke Biol. 13: 252–265.CrossRefGoogle Scholar
  29. Mazza, C.A., Boccalandro, H.E., Giordano, C.V., Battista, D., Scopel, A.L., & Ballaré, C.L. 2000. Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol. 122: 117–126.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Moffatt, B., Ewart., V., & Eastman, A. 2006. Cold comfort: plant antifreeze proteins. Physiol. Plant. 126: 5–16.CrossRefGoogle Scholar
  31. Murata, N. & Los, D.A. 1997. Membrane fluidity and temperature perception. Plant Physiol. 115: 875–879.PubMedCentralPubMedGoogle Scholar
  32. Ögren, E. 1997. Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiol. 17: 47–51.PubMedCrossRefGoogle Scholar
  33. Ögren, E., Nilsson, T., & Sundblad, L.-G. 1997. Relationships between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine. Plant Cell Environ. 20: 247–253.CrossRefGoogle Scholar
  34. Parcellier, A., Gurbuxani, S., Schmitt, E., Solary, E., & Garrido, C. 2003. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem. Biophys. Res. Comm. 304: 505–512.PubMedCrossRefGoogle Scholar
  35. Peñuelas, J. & Munné-Bosch, S. 2005. Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci. 10: 166–169.PubMedCrossRefGoogle Scholar
  36. Ruhland, C.T. & Day, T.A. 2000. Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol. Plant. 109: 244–251.CrossRefGoogle Scholar
  37. Sabehat, A., Lurie, S., & Weiss, D. 1998. Expression of small heat-shock proteins at low temperatures . a possible role in protecting against chilling injuries. Plant Physiol. 117: 651–658.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Sakai, A. & Larcher, W. 1987. Frost survival of plants. Responses and adaptation to freezing stress. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  39. Sharkey, T.D. 1996. Emission of low molecular mass hydrocarbons from plants. Trends Plant Sci. 1: 78–82.CrossRefGoogle Scholar
  40. Sharkey, T.D. & Yeh, S. 2001. Isoprene emission from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 407–436.PubMedCrossRefGoogle Scholar
  41. Sharkey, T.D., Wiberley, A.E., & Donohue, A.R. S. 2008. Isoprene emission from plants: why and how? Ann. Bot. 101: 5–18.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sheahan, J.J. 1996. Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 83: 679–686.CrossRefGoogle Scholar
  43. Sieg, F., Schröder, W., Schmitt, J.M., & Hincha, D.K. 1996. Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated cabbage. Plant Physiol. 111: 215–221.PubMedCentralPubMedGoogle Scholar
  44. Singsaas, E.L. & Sharkey, T.D. 1998. The regulation of isoprene emission responses to rapid leaf temperatures fluctuations. Plant Cell Environ. 21: 1181–1188.CrossRefGoogle Scholar
  45. Stapleton, A.E. & Walbot, V. 1994. Flavonoids protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol. 105: 881–889.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Stapleton, A.E., Thornber, C.S., & Walbot, V. 1997. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): Developmental and cellular heterogeneity of damage and repair. Plant Cell Environ. 20: 279–290.CrossRefGoogle Scholar
  47. Welling, A., Kaikuranta, P., & Rinne, P. 1997. Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol. Plant. 100: 119–125.CrossRefGoogle Scholar
  48. Wildi, B. & Lütz, C. 1996. Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 19: 138–146.CrossRefGoogle Scholar
  49. Williams, E.L., Hovenden, M.J., & Close, D.C. 2003. Strategies of light energy utilisation, dissipation and attenuation in six co-occurring alpine heath species in Tasmania. Funct. Plant Biol. 30: 1205–1218.CrossRefGoogle Scholar
  50. Xiong, L., Schumaker, K.S., & Zhu, J.-K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165–183.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Yu, X.-M. & Griffith, M. 1999. Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiol. 119: 1361–1369.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations