Skip to main content

Effects of Radiation and Temperature

  • Chapter
Plant Physiological Ecology

Abstract

In Chapter 4A on the plant’s energy balance, we discussed traits that reflect radiation or otherwise avoid high radiation loads in high-light environments. Many plants lack these adaptations and absorb potentially damaging levels of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apel, K. & Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Bartels, D. & Nelson, D. 1994. Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ. 17: 659–667.

    Article  CAS  Google Scholar 

  • Burchard, P., Bilger, W., & Weissenbock, G. 2000. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 23: 1373–1380.

    Article  CAS  Google Scholar 

  • Caldwell, M.M. 1981. Plant responses to solar ultraviolet radiation. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 169–197.

    Google Scholar 

  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., & Anchordoguy, T.J. 1990. Are freezing and dehydration similar stress factors? A comparison of modes of interaction of different biomolecules. Cryobiol. 27: 219–231.

    Article  CAS  Google Scholar 

  • Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., & Sarhan, F. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623–638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Day, T.A. 1993. Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants. Oecologia 95: 542–550.

    Google Scholar 

  • Day, T.A., Martin, G., & Vogelmann, T.C. 1993. Penetration of UV-B radiation in foliage: evidence that he epidermis behaves as a non-uniform filter. Plant Cell Environ. 16: 735–741.

    Article  Google Scholar 

  • Day, T.A., Howells, B.W., & Rice, W.J. 1994. Ultraviolet absorption and epidermal-transmittance in foliage. Physiol. Plant. 92: 207–218.

    Article  CAS  Google Scholar 

  • Doxey, A.C., Yaish, M.W., Griffith, M., & McConkey, B.J. 2006, Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nature 24: 852–855.

    CAS  Google Scholar 

  • Frohnmeyer, H. & Staiger, D. 2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 133: 1420–1428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith, M. & Yaish, M.W.F. 2004. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 9: 399–405.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, M., Antikainen, M., Hon, W.-C., Pihakaski-Maunschbach, K., Yu, X., Chun, J.U., & Yang, D.S. 1997. Antifreeze proteins in winter rye. Physiol. Plant. 100: 327–332.

    Article  CAS  Google Scholar 

  • Henkov, L., Strid, A., Berglund, T., Rydstrom, J., & Ohlsson, A.B. 1996. Alteration of gene expression in Pisum sativum tissue cultures caused by the free radical-generating agent 2,2'-azobis (2-aminopropane) dihydrochloride. Physiol. Plant. 96: 6–12.

    Article  Google Scholar 

  • Hidema, J., Kumagai, T., Sutherland, J.C., & Sutherland, B.M. 1997. Ultraviolet B-sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol. 113: 39–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hincha, D.K., Meins, F., & Schmidt, J.M. 1997. β-1,3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol. 114: 1077–1083.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hon, W.-C., Griffith, M., Chong, P., & Yang, D.S.C. 1994. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol. 104: 971–980.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irigoyen, J.J., Perez de Juan, J., & Sanchez-Diaz, M. 1996. Drought enhances chilling tolerance in a chilling-sensitive maize (Zea mays) variety. New Phytol. 134: 53–59.

    Article  Google Scholar 

  • Ishitani, M., Xiong, L., Stevenson, B., Zhu, J.-K. 1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9: 1935–1949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karabourniotis, G., Papadopoulos, K., Papamarkou, M & Manetas, Y. 1992. Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiol. Plant. 86: 414–418.

    Article  Google Scholar 

  • Karabourniotis, G., Kofidis, G., Fasseas, C., Liakoura, V., & Drossopoulos, I. 1998. Polyphenol deposition in leaf hairs of Olea europaea (Oleaceae) and Quercus ilex (Fagaceae). Am. J. Bot. 85: 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  • Körner, C. & Diemer, M. 1987. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct. Ecol. 1: 179–194.

    Article  Google Scholar 

  • Lerday, M. & Keller, M. 1997. Controls on isoprene emission from trees in a subtropical dry forest. Plant Cell Environ. 20: 569–578.

    Article  Google Scholar 

  • Lichtenthaler, H.K. 2007. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 92: 163–179.

    Article  CAS  PubMed  Google Scholar 

  • Loreto, F. & Velikova, V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127: 1781–1787.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loreto, F., Förster, A., Dürr, M., Csiky, O., & Seufert, G. 1998. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ. 21: 101–107.

    Article  CAS  Google Scholar 

  • Marentes, E., Griffiths, M., Mlynarz, A., & Brush, R.A. 1993. Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol. Plant. 87: 499–507.

    Article  CAS  Google Scholar 

  • Martz, F., Sutinen, M.-L., Derome, K., Wingsle, G., Julkunen-Tiito, R., & Turunen, M. 2007. Effects of ultraviolet (UV) exclusion on the seasonal concentration of photosynthetic and UV-screening pigments in Scots pine needles. Global Chanke Biol. 13: 252–265.

    Article  Google Scholar 

  • Mazza, C.A., Boccalandro, H.E., Giordano, C.V., Battista, D., Scopel, A.L., & Ballaré, C.L. 2000. Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol. 122: 117–126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moffatt, B., Ewart., V., & Eastman, A. 2006. Cold comfort: plant antifreeze proteins. Physiol. Plant. 126: 5–16.

    Article  CAS  Google Scholar 

  • Murata, N. & Los, D.A. 1997. Membrane fluidity and temperature perception. Plant Physiol. 115: 875–879.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ögren, E. 1997. Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiol. 17: 47–51.

    Article  PubMed  Google Scholar 

  • Ögren, E., Nilsson, T., & Sundblad, L.-G. 1997. Relationships between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine. Plant Cell Environ. 20: 247–253.

    Article  Google Scholar 

  • Parcellier, A., Gurbuxani, S., Schmitt, E., Solary, E., & Garrido, C. 2003. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem. Biophys. Res. Comm. 304: 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas, J. & Munné-Bosch, S. 2005. Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci. 10: 166–169.

    Article  PubMed  Google Scholar 

  • Ruhland, C.T. & Day, T.A. 2000. Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol. Plant. 109: 244–251.

    Article  CAS  Google Scholar 

  • Sabehat, A., Lurie, S., & Weiss, D. 1998. Expression of small heat-shock proteins at low temperatures . a possible role in protecting against chilling injuries. Plant Physiol. 117: 651–658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai, A. & Larcher, W. 1987. Frost survival of plants. Responses and adaptation to freezing stress. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Sharkey, T.D. 1996. Emission of low molecular mass hydrocarbons from plants. Trends Plant Sci. 1: 78–82.

    Article  Google Scholar 

  • Sharkey, T.D. & Yeh, S. 2001. Isoprene emission from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 407–436.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T.D., Wiberley, A.E., & Donohue, A.R. S. 2008. Isoprene emission from plants: why and how? Ann. Bot. 101: 5–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheahan, J.J. 1996. Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 83: 679–686.

    Article  CAS  Google Scholar 

  • Sieg, F., Schröder, W., Schmitt, J.M., & Hincha, D.K. 1996. Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated cabbage. Plant Physiol. 111: 215–221.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singsaas, E.L. & Sharkey, T.D. 1998. The regulation of isoprene emission responses to rapid leaf temperatures fluctuations. Plant Cell Environ. 21: 1181–1188.

    Article  CAS  Google Scholar 

  • Stapleton, A.E. & Walbot, V. 1994. Flavonoids protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol. 105: 881–889.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stapleton, A.E., Thornber, C.S., & Walbot, V. 1997. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): Developmental and cellular heterogeneity of damage and repair. Plant Cell Environ. 20: 279–290.

    Article  CAS  Google Scholar 

  • Welling, A., Kaikuranta, P., & Rinne, P. 1997. Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol. Plant. 100: 119–125.

    Article  CAS  Google Scholar 

  • Wildi, B. & Lütz, C. 1996. Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 19: 138–146.

    Article  CAS  Google Scholar 

  • Williams, E.L., Hovenden, M.J., & Close, D.C. 2003. Strategies of light energy utilisation, dissipation and attenuation in six co-occurring alpine heath species in Tasmania. Funct. Plant Biol. 30: 1205–1218.

    Article  Google Scholar 

  • Xiong, L., Schumaker, K.S., & Zhu, J.-K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165–183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu, X.-M. & Griffith, M. 1999. Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiol. 119: 1361–1369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Effects of Radiation and Temperature. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_7

Download citation

Publish with us

Policies and ethics