Advertisement

Long-Distance Transport of Assimilates

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons

Abstract

The evolution of cell walls allowed plants to solve the problem of osmoregulation in freshwater environments; however, cell walls restrict motility and place constraints on the evolution of long-distance transport systems. Tissues are too rigid for a heart-pump mechanism; instead, higher plants have two systems for long-distance transport. The dead elements of the xylem allow transport of water and solutes between sites of different water potentials. That transport system is dealt with in Chapter 3 on plant water relations. The other transport system, the phloem, allows the mass flow of carbohydrates and other solutes from a source region, where the hydrostatic pressure in the phloem is relatively high, to a sink region with lower pressure.

Keywords

Intermediary Cell Sieve Tube Sieve Element Minor Vein Bundle Sheath Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. Böckenhoff, A., Prior, D.A.M., Gruddler, F.M.W., & Oparka, K.J. 1996. Induction of phloem unloading in Arabidopsis thaliana roots by the parasitic nematode Heterodera schachtii. Plant Physiol. 112: 1421–1427.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Dorhout, R., Gommers, F.J., & Kollöffel, C. 1993. Phloem transport of carboxyfluorescein through tomato roots infected with Meloidogyne incognita. Physiol. Mol. Plant Pathol. 43: 1–10.CrossRefGoogle Scholar
  3. Ewers, F.W. & Fisher, J.B. 1991. Why vines have narrow stems: Histological trends in Bauhinia fassoglensis (Fabaceae). Oecologia 88: 233–237.CrossRefGoogle Scholar
  4. Furch, A.C.U, Hafke, J.B., Schulz, A., & Van Bel, A.J.E. 2007. Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J. Exp. Bot. 58: 2827–2838.PubMedCrossRefGoogle Scholar
  5. Gamalei, Y.V. 1989. Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3: 96–110.CrossRefGoogle Scholar
  6. Gamalei, Y.V. 1991. Phloem loading and its development related to plant evolution from trees to herbs. Trees 5: 50–64.CrossRefGoogle Scholar
  7. Haritatos, E., Medville, R., & Turgeon, R. 2000. Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211: 105–111.PubMedCrossRefGoogle Scholar
  8. Hu, H., Penn, S.G., Lebrilla, C.B., & Brown P.H. 1997. Isolation and characterization of soluble boron complexes in higher plants: the mechanism of phloem mobility of boron. Plant Physiol. 113: 649–655.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., & Timmermans, M.C.P. 2004. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428: 84–88.PubMedCrossRefGoogle Scholar
  10. Loescher, W.H. & Everard J.D. 2000. Regulation of sugar alcohol biosynthesis. In: Photosynthesis: physiology and metabolism, R.C. Leegood, T.D. Sharkey, & S. Von Caemmerer (eds.). Kluwer Academic Publishers, Dordrecht, pp. 275–299.Google Scholar
  11. Lough, T.J. & Lucas, W.J. 2006. Integrative plant biology: role of phloem long-distance molecular trafficking. Annu. Rev. Plant Biol. 57: 203–232.PubMedCrossRefGoogle Scholar
  12. Marschner, H. 1995. Mineral nutrition of higher plants, 2nd edition. Academic Press, London.Google Scholar
  13. Offler, C.E., McCurdy, D.W., Patrick, J.W., & Talbot, M.J. 2003. Transfer cells: cells specialized for a special purpose. Annu. Rev. Plant Biol. 54: 431–454.PubMedCrossRefGoogle Scholar
  14. Oparka, K.J., Duckett, C.M., Prior, D.A.M., & Fisher, D.B. 1994. Real time imaging of phloem unloading in the root tip of Arabidopsis. Plant J. 6: 759–766.CrossRefGoogle Scholar
  15. Pate, J.S. & Hocking, P.J. 1978. Phloem and xylem transport in the supply of minerals to a developing legume (Lupinus albus L.) fruit. Ann. Bot. 42: 911–21.Google Scholar
  16. Roberts, A.G., Santa Cruz, S., Roberts, I.M., Prior, D.A.M., Turgeon, R., & Oparka, K.J. 1997. Phloem unloading in sink leaves of Nicotiana benthaminiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9: 1381–1396.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Ruan, Y.-L., Llewellyn, D.J., & Furbank R.T. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13: 47–60.PubMedCentralPubMedGoogle Scholar
  18. Samaj, J., Baluska, F., Voigt, B., Schlicht, M., Volkmann, D., & Menzel, D. 2004. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 135: 1150–1161.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Schrier, A.A., Hoffmann-Thoma, G., & Van Bel A.J.E. 2000. Temperature effects on symplasmic and apoplasmic phloem loading and loading-associated carbohydrate processing. Aust. J. Plant Physiol. 27: 769–778.Google Scholar
  20. Turgeon R. 1987. Phloem unloading in tobacco sink leaves: insensitivity to anoxia indicates a symplastic pathway. Planta 171: 73–81.PubMedCrossRefGoogle Scholar
  21. Turgeon, R. 1991. Symplasmic phloem loading and the sink-source transition in leaves: A model. In: Recent advances in phloem transport and assimilate compartmentation, J.L. Bonnemain, S. Delrot, W.J. Lucas, & J. Dainty (eds.). Ouest Edition, Nantes, pp. 18–22.Google Scholar
  22. Turgeon, R. 1995. The selection of raffinose family oligosaccharides as translocates in higher plants. In: Carbon partitioning and source-sink interactions in plants, M.A. Madore & W.J. Lucas (eds.). American Society of Plant Physiologists, Rockville, pp. 195–203.Google Scholar
  23. Turgeon, R. 1996. Phloem loading and plasmodesmata. Trends Plant Sci. 1: 418–423.CrossRefGoogle Scholar
  24. Turgeon R. 2006. Phloem loading: how leaves gain their independence. BioScience 56: 15–24.CrossRefGoogle Scholar
  25. Turgeon, R. & Medville, R. 1998. The absence of phloem loading in willow leaves. Proc. Natl. Acad. Sci. USA 95: 12055–12060.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Turgeon, R., Medville, R., & Nixon, K.C. 2001. The evolution of minor vein phloem and phloem loading. Am. J. Bot. 88: 1331–1339.PubMedCrossRefGoogle Scholar
  27. Van Bel, A.J.E. 2003. The phloem, a miracle of ingenuity. Plant Cell Environ. 26: 125–149.CrossRefGoogle Scholar
  28. Volk, G.M., Turgeon, R., & Beebe, D.U. 1996. Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L. and Cucurbita pepo L. Planta 199: 425–432.CrossRefGoogle Scholar
  29. Wang, N. & Nobel, P.S. 1998. Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiol. 116: 709–714.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Will, T., Tjallingii, W.F., Thonnessen, A., & van Bel, A.J.E. 2007. Molecular sabotage of plant defense by aphid saliva. Proc. Natl. Acad. Sci. USA 104: 10536–10541.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Zhang, W.-H., Zhou, Y., Dibley, K.E., Tyerman, S.D., Furbank, R.T., & Patrick, J.W. 2007. Nutrient loading of developing seeds. Funct. Plant Biol. 34: 314–331.CrossRefGoogle Scholar
  32. Zhou, Y., Setz, N., Niemietz, C., Qu., H, Offler, C.E., Tyerman, S.D., & Patrick, J.W. 2007. Aquaporins and unloading of phloem-imported water in coats of developing bean seeds. Plant Cell Environ. 30: 1566–1577.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations