• Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


A large portion of the carbohydrates that a plant assimilates each day are expended in respiration in the same period (Table 1). If we seek to explain the carbon balance of a plant and to understand plant performance and growth in different environments, it is imperative to obtain a good understanding of respiration. Dark respiration is needed to produce the energy and carbon skeletons to sustain plant growth; however, a significant part of respiration may proceed via a nonphosphorylating pathway that is cyanide resistant and generates less ATP than the cytochrome pathway, which is the primary energy-producing pathway in both plants and animals. We present several hypotheses in this chapter to explore why plants have a respiratory pathway that is not linked to ATP production.


Root Respiration Alternative Path Alternative Oxidase Oxidative Pentose Phosphate Pathway Maintenance Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amthor, J.S. 2000. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann. Bot. 86: 1–20.Google Scholar
  2. Andrews, D.L., Cobb, B.G., Johnson, J.R., & Drew, M.C. 1993. Hypoxic and anoxic induction of alcohol dehydrogenase in roots and shoots of seedlings of Zea mays. Adh transcripts and enzyme activity. Plant Physiol. 101: 407–414.PubMedCentralPubMedGoogle Scholar
  3. Armstrong, A.F., Logan, D.C., Tobin, A.K., O'Toole, P., & Atkin, O.K. 2006. Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ. 29: 940–949.PubMedGoogle Scholar
  4. Armstrong, J., Lemos, E.E.P, Zobayed, S.M.A., Justin, S.H.F.W., & Armstrong, W. 1997. A humidity-induced convective throughflow ventilation system benefits Annona squamosa L. explants and coconut calloid. Ann. Bot. 79: 31–40.Google Scholar
  5. Atkin, O.K. & Tjoelker, M.G. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8: 343–351.PubMedGoogle Scholar
  6. Atkin, O.K., Villar, R., & Lambers, H. 1995. Partitioning of electrons between the cytochrome and the alternative pathways in intact roots. Plant Physiol. 108: 1179–1183.PubMedCentralPubMedGoogle Scholar
  7. Atkin, O.K., Evans, J.R., Ball, M.C., Lambers, H., & Pons, T.L. 2000. Leaf respiration of snow gum in the light and dark. interactions between temperature and irradiance. Plant Physiol. 122: 915–924.PubMedCentralPubMedGoogle Scholar
  8. Atkin, O.K., Scheurwater, I., & Pons, T.L. 2007. Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol. 174: 367–380.PubMedGoogle Scholar
  9. Atkinson, L.J., Hellicar, M.A., Fitter, A.H., & Atkin, O.K. 2007. Impact of temperature on the relationship between respiration and nitrogen concentration in roots: an analysis of scaling relationships, Q10 values and thermal acclimation ratios. New Phytol. 173: 110–120.PubMedGoogle Scholar
  10. Ben Zioni, A., Vaadia, Y., & Lips, S.H. 1971. Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol. Plant 24: 288–290.Google Scholar
  11. Bigeleisen, J. & Wolfsberg, M. 1959. Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv. Chem. Phys. 1: 15–76.Google Scholar
  12. Bingham, I.J. & Farrar, J.F. 1988. Regulation of respiration in barley roots. Physiol. Plant 73: 278–285.Google Scholar
  13. Blanke, M.M. & Whiley, A.W. 1995. Bioenergetics, respiration costs and water relations of developing avocado fruit. J. Plant Physiol. 145: 87–92.Google Scholar
  14. Blokhina, O., Virolainen, E., & Fagerstedt, K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179–194.PubMedGoogle Scholar
  15. Bloom, A. & Epstein, E. 1984. Varietal differences in salt-induced respiration in barley. Plant Sci. Lett. 35: 1–3.Google Scholar
  16. Bloom, A.J., Caldwell, R.M., Finazzo, J., Warner, R.L., & Weissbart, J. 1989. Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol. 91: 352–356.PubMedCentralPubMedGoogle Scholar
  17. Bouma, T. 2005. Understanding plant respiration: Separating respiratory components versus a process-based approach. In: Plant respiration. From cell to ecosystem, H. Lambers & M. Ribas-Carbó (eds.). Springer, Dordrecht, pp. 177–194.Google Scholar
  18. Bouma, T. & De Visser, R. 1993. Energy requirements for maintenance of ion concentrations in roots. Physiol. Plant 89: 133–142.Google Scholar
  19. Bouma, T., De Visser, R., Janssen, J.H.J.A., De Kock, M.J., Van Leeuwen, P.H., & Lambers, H. 1994. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol. Plant 92: 585–594.Google Scholar
  20. Bouma, T., Broekhuysen, A.G.M., & Veen, B.W. 1996. Analysis of root respiration of Solanum tuberosum as related to growth, ion uptake and maintenance of biomass: a comparison of different methods. Plant Physiol. Biochem. 34: 795–806.Google Scholar
  21. Bouma, T., Nielsen, K.L., Eissenstat, D.M., & Lynch, J.P. 1997. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content. Plant Soil 195: 221–232.Google Scholar
  22. Bruhn, D., Wiskich, J.T., & Atkin, O.K. 2007. Contrasting responses by respiration to elevated CO2 in intact tissue and isolated mitochondria. Funct. Plant Biol. 34: 112–117.Google Scholar
  23. Burton, A.J., Zogg, G.P., Pregitzer, K.S., & Zak, D.R. 1997. Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiol. 17: 421–427.PubMedGoogle Scholar
  24. Bustan, A. & Goldschmidt, E.E. 1998. Estimating the cost of flowering in a grapefruit tree. Plant Cell Environ. 21: 217–224.Google Scholar
  25. Cannell, M.G.R. & Thornley, J.H.M. 2000. Modelling the components of plant respiration: some guiding principles. Ann. Bot. 85: 45–54.Google Scholar
  26. Chapin III, F.S. 1989. The costs of tundra plant structures: Evaluation of concepts and currencies. Am. Nat. 133: 1–19.Google Scholar
  27. Chapman, K.S.R. & Hatch, M.D. 1977. Regulation of mitochondrial NAD-malic enzyme involved in C4 pathway photosynthesis. Arch. Biochem. Biophys. 184: 298–306.PubMedGoogle Scholar
  28. Collier, D.E., Ackermann, F., Somers, D.J., Cummins, W.R., & Atkin, O.K. 1993. The effect of aluminium exposure on root respiration in an aluminium-sensitive and an aluminium-tolerant cultivar of Triticum aestivum. Physiol. Plant. 87: 447–452.Google Scholar
  29. Colmer, T.D. 2003a. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91: 301–309.Google Scholar
  30. Colmer, T.D. 2003b. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26: 17–36.Google Scholar
  31. Considine, M.J., Daley, D.O., & Whelan, J. 2001. The expression of alternative oxidase and uncoupling protein during fruit ripening in mango. Plant Physiol. 126: 1619–1629.PubMedCentralPubMedGoogle Scholar
  32. Considine, M.J., Holtzapffel, R.C., Day, D.A., Whelan, J., & Millar, A.H. 2002. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol. 129: 949–953.PubMedCentralPubMedGoogle Scholar
  33. Covey-Crump, E.M., Attwood, R.G., & Atkin, O.K. 2002. Regulation of root respiration in two species of Plantago that differ in relative growth rate: the effect of short- and long-term changes in temperature. Plant Cell Environ. 25: 1501–1513.Google Scholar
  34. Covey-Crump, E.M., Bykova, N.V., Affourtit, C., Hoefnagel, M.H.N., Gardeström, P. & Atkin, O.K. 2007. Temperature-dependent changes in respiration rates and redox poise of the ubiquinone pool in protoplasts and isolated mitochondria of potato leaves. Physiol. Plant 129: 175–184.Google Scholar
  35. Criddle, R.S., Hopkin, M.S., McArthur, E.D., & Hansen, L.D. 1994. Plant distribution and the temperature coefficient of metabolism. Plant Cell Environ. 17: 233–243.Google Scholar
  36. Dacey, J.W.A. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210: 1017–1019.PubMedGoogle Scholar
  37. Dacey, J.W.A. 1987. Knudsen-transitional flow and gas pressurization in leaves of Nelumbo. Plant Physiol. 85: 199–203.PubMedCentralPubMedGoogle Scholar
  38. Davey, P.A., Hunt, S., Hymus, G.J., DeLucia, E.H., Drake, B.G., Karnosky, D.F., & Long, S.P. 2004. Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO2], but is increased with long-term growth in the field at elevated [CO2]. Plant Physiol 134: 520–527.PubMedCentralPubMedGoogle Scholar
  39. Davies, D.D. 1979. Factors affecting protein turnover in plants. In: Nitrogen assimilation of plants, E.J. Hewitt & C.V. Cutting (eds.). Academic Press, London, pp. 369–396.Google Scholar
  40. Day, D.A., Whelan, J., Millar, A.H., Siedow, J.N., & Wiskich, J.T. 1995. Regulation of the alternative oxidase in plants and fungi. Aust. J. Plant Physiol. 22: 497–509.Google Scholar
  41. Day, D.A., Krab, K., Lambers, H., Moore, A.L., Siedow, J.N., Wagner, A.M., & Wiskich, J.T. 1996. The cyanide-resistant oxidase: to inhibit or not to inhibit, that is the question. Plant Physiol. 110: 1–2.PubMedCentralPubMedGoogle Scholar
  42. De Boer, A.H. & Wegner, L.H. 1997. Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48: 441–449.PubMedGoogle Scholar
  43. De Jong, T.M. & Walton, E.F. 1989. Carbohydrate requirements of peach fruits, growth and respiration. Tree Physiol. 5: 329–335.Google Scholar
  44. De Visser, R., Spitters, C.J.T., & Bouma, T. 1992. Energy costs of protein turnover: theoretical calculation and experimental estimation from regression of respiration on protein concentration of full-grown leaves. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 493–508.Google Scholar
  45. Dry, I.B., Moore, A.L., Day. D.A., & Wiskich, J.T. 1989. Regulation of alternative pathway activity in plant mitochondria. Non-linear relationship between electron flux and the redox poise of the quinone pool. Arch. Biochem. Biophys. 273: 148–157.PubMedGoogle Scholar
  46. Dueck, T.A., De Visser, R., Poorter, H., Persijn, S., Gorissen, A., de Visser, W., Schapendonk, A., Verhagen, J., Snel, J., Harren, F.J.M., Ngai, A.K.Y., Verstappen, F., Bouwmeester, H., Voesenek, L.A.C.J., & Van der Werf, A. 2007. No evidence for substantial aerobic methane emission by terrestrial plants: a 13Clabelling approach. New Phytol. 175: 29–35.PubMedGoogle Scholar
  47. Escobar, M.A., Geisler, D.A., & Rasmusson, A.G. 2006. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J. 45: 775–788.PubMedGoogle Scholar
  48. Evans, L.T. 1980. The natural history of crop yield. Am. Sci. 68: 388–397.Google Scholar
  49. Farrar, J.F. & Rayns, F.W. 1987. Respiration of leaves of barley infected with powdery mildew: increased engagement of the alternative oxidase. New Phytol. 107: 119–125.Google Scholar
  50. Florez-Sarasa, I.D., Bouma, T.J., Medrano, H., Azcón-Bieto, J. & Ribas-Carbó, M. 2007. Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in Arabidopsis thaliana. Physiol. Plant. 129: 143–151.Google Scholar
  51. Foyer, C.H. & Noctor, G. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146: 359–388.Google Scholar
  52. Fredeen, A.L. & Field, C.B. 1991. Leaf respiration in Piper species native to a Mexican rainforest. Physiol. Plant. 82: 85–92.Google Scholar
  53. Galmés, J., Ribas-Carbó, M., Medrano, H., & Flexas, J. 2007. Response of leaf respiration to water stress in Mediterranean species with different growth forms. J. Arid Environ. 68: 206–222.Google Scholar
  54. Gomez-Casanovas, N., Blanc-Betes, E., Gonzàlez-Meler, M.A., & Azcón-Bieto, J. 2007. Changes in respiratory mitochondrial machinery and cytochrome and alternative pathway activities in response to energy demand underlie the acclimation of respiration to elevated CO2 in the invasive Opuntia ficus-indica. Plant Physiol. 145: 49–61.PubMedCentralPubMedGoogle Scholar
  55. Gonzàlez-Meler, Ribas-Carbó, M., Siedow, J.N., & Drake, B.G. 1996. Direct inhibition of plant respiration by elevated CO2. Plant Physiol. 112: 1349–1355.PubMedCentralPubMedGoogle Scholar
  56. Gonzàlez-Meler, Ribas-Carbó, M., Giles, L., & Siedow, J.N. 1999. The effect of growth and measurement temperature on the activity of the alternative respiratory pathway. Plant Physiol. 120: 765–772.PubMedCentralPubMedGoogle Scholar
  57. Good, B.J. & Patrick, W.H. 1987. Gas composition and respiration of water oak (Quercus nigra L.) and green ash (Fraxinus pennsylvanica Marsh.) roots after prolonged flooding. Plant Soil 97: 419–427.Google Scholar
  58. Griffin, K.L., Anderson, O.R., Gastrich, M.D., Lewis, J.D., Lin, G., Schuster, W., Seemann, J.R., Tissue, D.T., Turnbull, M.H., & Whitehead, D. 2001. Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc. Natl. Acad. Sci. USA 98: 2473–2478.PubMedCentralPubMedGoogle Scholar
  59. Guy, R.D., Berry, J.A., Fogel, M.L., & Hoering, T.C. 1989. Differential fractionation of oxygen isotopes by cyanide-resistant and cyanide-sensitive respiration in plants. Planta 177: 483–491.PubMedGoogle Scholar
  60. Hagesawa, R., Muruyama, A., Nakaya, M., & Esashi, Y. 1995. The presence of two types of β-cyanoalanine synthase in germinating seeds and their response to ethylene. Physiol. Plant. 93: 713–718.Google Scholar
  61. Henry, B.K., Atkin, O.K., Farquhar, G.D., Day, D.A., Millar, A.H., & Menz, R.I. 1999. Calculation of the oxygen isotope discrimination factor for studying plant respiration. Aust. J. Plant Physiol. 26: 773–780.Google Scholar
  62. Hoefnagel, M.H.N. & Wiskich, J.T. 1998. Activation of the plant alternative oxidase by high reduction levels of the Q-pool and pyruvate. Arch. Biochem. Biophys. 355: 262–270.PubMedGoogle Scholar
  63. Hoefnagel, M.H.N., Millar, A.H., Wiskich, J.T., & Day, D.A. 1995. Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch. Biochem. Biophys. 318: 394–400.PubMedGoogle Scholar
  64. Hoefnagel, M.H.N., Rich, P.R., Zhang, Q., & Wiskich, J.T. 1997. Substrate kinetics of the plant mitochondrial alternative oxidase and the effects of pyruvate. Plant Physiol. 115: 1145–1153.PubMedCentralPubMedGoogle Scholar
  65. Hoefs, J. 1987. Stable isotope geochemistry. Springer-Verlag, Berlin.Google Scholar
  66. Hourton-Cabassa, C., Matos, A.R., Zachowski, A., & Moreau, F. 2004. The plant uncoupling protein homologues: a new family of energy-dissipating proteins in plant mitochondria. Plant Physiol. Biochem. 42: 283–290.PubMedGoogle Scholar
  67. Jackson, M.B. & Armstrong, W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274–287.Google Scholar
  68. Jackson, M.B., Herman, B., & Goodenough, A. 1982. An examination of the importance of ethanol in causing injury to flooded plants. Plant Cell Environ. 5: 163–172.Google Scholar
  69. Jahnke, S. & Krewitt, M. 2002. Atmospheric CO2 concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ. 25: 641–651.Google Scholar
  70. Karpova, O.V., Kuzmin, E.V., Elthon, T.E., & Newton and K.J. 2002. Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14: 3271–3284.PubMedCentralPubMedGoogle Scholar
  71. Kirschbaum, M.U.F., Niinemets, Ü., Bruhn, D., & Winters, A.J. 2007. How important is aerobic methane release by plants? Funct. Plant Sci. Biotechnol. 1: 138–145.Google Scholar
  72. Körner, C. & Larcher, W. 1988. Plant life in cold environments. In: Plants and temperature. Symposium of the Society of Experimental Biology, Vol. 42, S.P. Long & F.I. Woodward (eds.). The Company of Biologists, Cambridge, pp. 25–57.Google Scholar
  73. Knutson, R. M. 1974. Heat production and temperature regulation in eastern skunk cabbage. Science 186: 746–747.PubMedGoogle Scholar
  74. Krapp, A. & Stitt, M. 1994. Influence of high carbohydrate content on the activity of plastidic and cytosolic isozyme pairs in photosynthetic tissues. Plant Cell Environ. 17: 861–866.Google Scholar
  75. Kurimoto, K., Day, D.A., Lambers, H. & Noguchi, K. 2004a. Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice. Plant Cell Environ. 27: 853–862.Google Scholar
  76. Kurimoto, K., Millar, A.H., Lambers, H., Day, D.A., Noguchi, K. 2004b. Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production. Plant Cell Physiol. 45: 1015–1022.Google Scholar
  77. Lambers, H. 1982. Cyanide-resistant respiration: A non-phosphorylating electron transport pathway acting as an energy overflow. Physiol. Plant. 55: 478–485.Google Scholar
  78. Lambers, H. & Ribas-Carbó, M. (eds.). 2005. Plant respiration. From cell to ecosystem. Springer, Dordrecht.Google Scholar
  79. Lambers, H. & Van der Werf, A. 1988. Variation in the rate of root respiration of two Carex species: A comparison of four related methods to determine the energy requirements for growth, maintenance and ion uptake. Plant Soil 111: 207–211.Google Scholar
  80. Lambers, H., Blacquière, T., & Stuiver, C.E.E. 1981. Interactions between osmoregulation and the alternative respiratory pathway in Plantago coronopus as affected by salinity. Physiol. Plant. 51: 63–68.Google Scholar
  81. Lambers, H., Day, D.A., & Azcón-Bieto, J. 1983. Cyanide-resistant respiration in roots and leaves. Measurements with intact tissues and isolated mitochondria. Physiol. Plant. 58: 148–154.Google Scholar
  82. Lambers, H., Atkin, O.K. & Millenaar, F.F. 2002. Respiratory patterns in roots in relation to their functioning. In: Plant roots: the hidden half, 3rd edition, Y. Waisel, A. Eshel, & U. Kafkaki (eds.). Marcel Dekker, Inc. New York, pp. 521–552.Google Scholar
  83. Larigauderie, A. & Körner, C. 1995. Acclimation of dark leaf respiration to temperature in alpine and lowland plant species. Ann. Bot. 76: 245–252.Google Scholar
  84. Laties, G.G. 1998. The discovery of the cyanide-resistant alternative path: and its aftermath. In: Discoveries in plant biology, S.-Y. Yang & S.-D. Kung (eds.). World Scientific Publishing Co., Hong Kong. pp. 233–256.Google Scholar
  85. Loveys, B.R., Atkinson, L.J., Sherlock, D.J., Roberts, R.L., Fitter, A.H., & Atkin, OK 2003. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Global Change Biol. 9: 895–910.Google Scholar
  86. Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., & Tardieux, P. 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; Illustration for the denitrification and nitrification processes. Plant Soil 62: 413–430.Google Scholar
  87. Mata, C., Scheurwater, I., Martins-Louçao, M.-A., & Lambers, H. 1996. Root respiration, growth and nitrogen uptake of Quercus suber L. seedlings. Plant Physiol. Biochem. 34: 727–734.Google Scholar
  88. McDermitt, D.K. & Loomis, R.S. 1981. Elemental composition of biomass and its relation to energy content, growth efficiency and growth yield. Ann. Bot. 48: 275–290.Google Scholar
  89. McDonnel, E. & Farrar, J.F. 1992. Substrate supply and its effect on mitochondrial and whole tissue respiration in barley roots. In: Molecular, biochemical and physiological aspects plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 455–462.Google Scholar
  90. McIntosh, L. 1994. Molecular biology of the alternative oxidase. Plant Physiol. 105: 781–786.PubMedCentralPubMedGoogle Scholar
  91. Millar, A.H. & Day, D.A. 1997. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett. 398: 155–158.Google Scholar
  92. Millar, A.H., Hoefnagel, M.H.N., Day, D.A., & Wiskich, J.T. 1996. Specificity of the organic acid activation of the alternative oxidase in plant mitochondria. Plant Physiol. 111: 613–618.PubMedCentralPubMedGoogle Scholar
  93. Millar, A.H., Atkin, O.K., Menz, R.I., Henry, B., Farquhar, G., & Day, D.A. 1998. Analysis of respiratory chain regulation in roots of soybean seedlings. Plant Physiol. 117: 1083–1093.PubMedCentralPubMedGoogle Scholar
  94. Millenaar, F.F. & Lambers, H. 2003. The alternative oxidase; in vivo regulation and function. Plant Biol. 5: 2–15.Google Scholar
  95. Millenaar, F.F., Benschop, J. Wagner, A.M., & Lambers, H. 1998. The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool; and the activation state of the alternative oxidase. Plant Physiol. 118: 599–607.PubMedCentralPubMedGoogle Scholar
  96. Millenaar, F.F., Roelofs, R., Gonzàlez-Meler, M.A., Siedow, J.N. Wagner, A.M. & Lambers, H. 2000. The alternative oxidase in roots of Poa annua after transfer from high-light to low-light conditions. Plant J. 23: 623–632.PubMedGoogle Scholar
  97. Millenaar, F.F., Gonzàlez-Meler, M., Fiorani, F., Welschen, R., Ribas-Carbó, M., Siedow, J.N., Wagner, A.M. & Lambers, H. 2001. Regulation of alternative oxidase activity in six wild monocotyledonous species; an in vivo study at the whole root level. Plant Physiol. 126: 376–387.PubMedCentralPubMedGoogle Scholar
  98. Miller, P.C. & Stoner, W.A. 1979. Canopy structure and environmental interactions. In: Topics in plant population biology, O.T. Solbrig, S. Jain, G.B. Johnson, & P.H Raven (eds.). Columbia University Press, New York, pp. 428–458.Google Scholar
  99. Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41: 445–502.PubMedGoogle Scholar
  100. Møller, I.M. 2001 Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 561–591.PubMedGoogle Scholar
  101. Moynihan, M.R., Ordentlich, A., & Raskin, I. 1995. Chilling-induced heat evolution in plants. Plant Physiol. 108: 995–999.PubMedCentralPubMedGoogle Scholar
  102. Neuberger, M. & Douce, R. 1980. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Biochim. Biophys. Acta 589: 176–189.Google Scholar
  103. Nicholls, D.G. & Ferguson, S.J. 1992. Bioenergetics 2. Academic Press, London.Google Scholar
  104. Nobel, P.S. & Palta, J.A. 1989. Soil O2 and CO2 effects on root respiration of cacti. Plant Soil 120: 263–271.Google Scholar
  105. Noguchi, K. & Terashima, I. 2006. Responses of spinach leaf mitochondria to low N availability. Plant Cell Environ. 29: 710–719.PubMedGoogle Scholar
  106. Noguchi, K., Sonoike, K., & Terashima, I. 1996. Acclimation of respiratory properties of leaves of Spinacia oleracea (L.), a sun species, and of Alocasia macrorrhiza (L.) G. Don., a shade species, to changes in growth irradiance. Plant Cell Physiol. 37: 377–384.Google Scholar
  107. Noguchi, K., Nakajima, N., & Terashima, I. 2001a. Acclimation of leaf respiratory properties in Alocasia odora following reciprocal transfers of plants between high- and low-light environments. Plant Cell Environ. 24: 831–839.Google Scholar
  108. Noguchi, K., Go, C.-S., Terashima, I., Ueda, S., Yoshinari, T. 2001b. Activities of the cyanide-resistant respiratory pathway in leaves of sun and shade species. Funct. Plant Biol. 28: 27–35.Google Scholar
  109. Noguchi, K., Go, C.-S., Miyazawa, S.-I., Terashima, I., Ueda, S., Yoshinari, T. 2001c. Costs of protein turnover and carbohydrate export in leaves of sun and shade species. Funct. Plant Biol. 28: 37–47.Google Scholar
  110. Noguchi, K., Taylor, N.L., Millar, A.H., Lambers, H., & Day, D.A. 2005. Responses of mitochondria to light intensity in the leaves of sun and shade species. Plant Cell Environ. 28: 760–771.Google Scholar
  111. Overmyer, K., Brosche, M., & Kangasjarvi, J. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8: 335–342.PubMedGoogle Scholar
  112. Ögren, E. 1996. Premature dehardening in Vaccinium myrtillus during a mild winter: a cause for winter dieback? Funct. Ecol. 10: 724–732.Google Scholar
  113. Ögren, E. 2001. Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments. Physiol. Plant. 112: 71–77.PubMedGoogle Scholar
  114. Palet, A., Ribas-Carbó, M., Argiles, J.M., & Azcón-Bieto, J. 1991. Short-term effects of carbon dioxide on carnation callus cell respiration. Plant Physiol. 96: 467–472.PubMedCentralPubMedGoogle Scholar
  115. Palet, A., Ribas-Carbó, M., Gonzàlez-Meler, M.A., Aranda, X., & Azcón-Bieto, J. 1992. Short-term effects of CO2/bicarbonate on plant respiration. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 597–602.Google Scholar
  116. Penning de Vries, F.W.T. 1975. The cost of maintenance processes in plant cells. Ann. Bot. 39: 77–92.Google Scholar
  117. Penning de Vries, F.W.T., Brunsting, A.H.M., & Van Laar, H.H. 1974. Products, requirements and efficiency of biosynthesis: a quantitative approach. J. Theor. Biol. 45: 339–377.PubMedGoogle Scholar
  118. Perata, P. & Alpi, A. 1993. Plant responses to anaerobiosis. Plant Sci. 93: 1–17.Google Scholar
  119. Perata, P., Geshi, N., Yamaguchi, J, & Akazawa, T. 1992. Effect of anoxia on the induction of α-amylase in cereal seeds. Planta 191: 402–408.Google Scholar
  120. Perata, P., Guglielminetti, L., & Alpi, A. 1996. Anaerobic carbohydrate metabolism in wheat and barley, two anoxia-intolerant cereal seeds. J. Exp. Bot. 47: 999–1006.Google Scholar
  121. Plaxton, W.C. & Podestá, F.E. 2006. The functional organization and control of plant respiration. Crit. Rev. Plant Sci. 25: 159–198.Google Scholar
  122. Poorter, H. 1994. Construction costs and payback time of biomass: A whole plant perspective. In: A whole plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds.). SPB Academic Publishing, The Hague, pp. 111–127.Google Scholar
  123. Poorter, H. & Villar, R. 1997. Chemical composition of plants: Causes and consequences of variation in allocation of C to different plant compounds. In: Resource allocation in plants, Physiological ecology series, F. Bazzaz & J. Grace (eds.). Academic Press, San Diego, pp. 39–72.Google Scholar
  124. Poorter, H., Van der Werf, A., Atkin, O.K., & Lambers, H. 1991. Respiratory energy requirements of roots vary with the potential growth rate of a plant species. Physiol. Plant 83: 469–475.Google Scholar
  125. Poorter, H., Van de Vijver, C.A.D.M., Boot, R.G.A., & Lambers, H. 1995. Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Plant Soil 171: 217–227.Google Scholar
  126. Purvis, A.C. & Shewfelt, R.L. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol. Plant 88: 712–718.Google Scholar
  127. Qi, J., Marshall, J.D., & Mattson, K.G. 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol. 128: 435–442.Google Scholar
  128. Rachmilevitch, S., Lambers, H., & Huang, B. 2006. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. J. Exp. Bot. 57: 623–631.PubMedGoogle Scholar
  129. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G.Y., & Solomon, S. 2001. Radiative forcing of climate change. In: Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change, J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell, & C.A. Johnson (eds.). Cambridge University Press, Cambridge, pp. 349–416.Google Scholar
  130. Raskin, I., Turner, I.M., & Melander, W.R. 1989. Regulation of heat production in the inflorescence of an Arum lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. USA 86: 2214–2218.PubMedCentralPubMedGoogle Scholar
  131. Rasmusson, A.G., Soole, K.L., & Elthon, T.E. 2004. Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu. Rev. Plant Biol. 55: 23–39.PubMedGoogle Scholar
  132. Reich, P.B., Walters, M.B., Tjoelker, M.G., Vanderklein, D., & Buschena, C. 1998. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct. Ecol. 12: 395–405.Google Scholar
  133. Reich, P.B., Tjoelker, M.G., Machado, J.-L., & Oleksyn, J. 2006. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439: 457–461.PubMedGoogle Scholar
  134. Rennenberg, H. & Filner, P. 1983. Developmental changes in the potential for H2S emission in cucurbit plants. Plant Physiol. 71: 269–275.PubMedCentralPubMedGoogle Scholar
  135. Rhoads, D.M., Umbach, A.L., Subbaiah, C.C., & Siedow, J.N. 2006. Mitochondria reactive oxygen species. Contribution of oxidative stress and interorganeller signaling. Plant Physiol. 141: 357–366.PubMedCentralPubMedGoogle Scholar
  136. Ribas-Carbó, M., Berry, J.A., Yakir, D., Giles, L., Robinson, S.A., Lennon, A.M., & Siedow, J.N. 1995. Electron partitioning between the cytochrome and alternative pathways in plant mitochondria. Plant Physiol. 109: 829–837.PubMedCentralPubMedGoogle Scholar
  137. Ribas-Carbó, M., Lennon, A.M., Robinson, S.A., Giles, L., Berry, J., & Siedow, J.N. 1997. The regulation of the electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria. Plant Physiol. 113: 903–911.PubMedCentralPubMedGoogle Scholar
  138. Ribas-Carbó, M., Taylor, N.L., Giles, L., Busquets, S, Finnegan, P., Day, D., Lambers, H. Medrano, H., Berry, J.A., & Flexas, J. 2005a. Effects of water stress on respiration in soybean (Glycine max. L.) leaves. Plant Physiol. 139: 466–473.Google Scholar
  139. Ribas-Carbó, M., Robinson, S.A., & Giles, L. 2005b. The application of the oxygen-isotope technique to assess respiratory pathway partitioning. In: Plant respiration. From cell to ecosystem, H. Lambers & M. Ribas-Carbó (eds.). Springer, Dordrecht, pp. 177–194.Google Scholar
  140. Richter, D.D. & Markewitz, D. 1995. How deep is soil? BioScience 45: 600–609.Google Scholar
  141. Rivoal, J. & Hanson, A.D. 1993. Evidence for a large and sustained glycolytic flux to lactate in anoxic roots of some members of the halophytic genus Limonium. Plant Physiol. 101: 553–560.PubMedCentralPubMedGoogle Scholar
  142. Rivoal, J. & Hanson, A.D. 1994. Metabolic control of anaerobic glycolysis. Overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol. 106: 1179–1185.PubMedCentralPubMedGoogle Scholar
  143. Roberts, J.K.M. 1984. Study of plant metabolism in vivo using NMR spectroscopy. Annu. Rev. Plant Physiol. 35: 375–386.Google Scholar
  144. Roberts, J.K.M., Wemmer, D., & Jardetzky, O. 1984a. Measurements of mitochondrial ATP-ase activity in maize root tips by saturation transfer 31P nuclear magnetic resonance. Plant Physiol. 74: 632–639.Google Scholar
  145. Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., & Freeling, M. 1984b. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA 81: 6029–6033.Google Scholar
  146. Roberts, J.K.M., Andrade, JH., & Anderson, I.C. 1985. Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol. 77: 492–494.PubMedCentralPubMedGoogle Scholar
  147. Robinson, S.A., Yakir, D., Ribas-Carbó, M., Giles, L. Osmond, C.B., Siedow, J.N., & Berry, J.A. 1992. Measurements of the engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoë daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol. 100: 1087–1091.PubMedCentralPubMedGoogle Scholar
  148. Robinson, S.A., Ribas-Carbó, M., Yakir, D., Giles, L., Reuveni, Y., & Berry, J.A. 1995. Beyond SHAM and cyanide: opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination. Aust. J. Plant Physiol. 22: 487–496.Google Scholar
  149. Ryan, M.G. 1995. Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. Plant Cell Environ. 18: 765–772.Google Scholar
  150. Ryan, M.G. & Waring, R.H. 1992. Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73: 2100–2108.Google Scholar
  151. Ryan, M.G., Linder, S., Vose, J.M., & Hubbard, R.M. 1994. Dark respiration of pines. Ecol. Bull. 43: 50–63.Google Scholar
  152. Ryan, M.G., Binkley, D., & Fownes, J.H. 1997. Age-related decline in forest productivity: pattern and process. Adv. Ecol. Res. 27: 213–262.Google Scholar
  153. Schaaf, J., Walter, M.H., & Hess, D. 1995. Primary metabolism in plant defense. Regulation of bean malic enzyme gene promoter in transgenic tobacco by development and environmental cues. Plant Physiol. 108: 949–960.PubMedCentralPubMedGoogle Scholar
  154. Scheurwater, I., Cornelissen, C., Dictus, F. Welschen, R., & Lambers, H. 1998. Why do fast- and slow-growing grass species differ so little in their rate of root respiration, considering the large differences in rate of growth and ion uptake? Plant Cell Environ. 21: 995–1005.Google Scholar
  155. Scheurwater, I., Clarkson, D.T., Purves, J.V., Van Rijt, G., Saker, L.R., Welschen, R., & Lambers, H. 1999. Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow-growing grass species. Plant Soil 215: 123–134.Google Scholar
  156. Scheurwater, I., Dünnebacke, M., Eising, R. & Lambers, H. 2000. Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species. J. Exp. Bot. 51: 1089–1097.PubMedGoogle Scholar
  157. Scheurwater, I., Koren, M., Lambers, H., & Atkin, O.K. 2002. The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J. Exp. Bot. 53: 1635–1642.PubMedGoogle Scholar
  158. Schubert, S., Schubert, E., & Mengel, K. 1990. Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124: 239–244.Google Scholar
  159. Seymour, R.S. 2001. Biophysics and physiology of temperature regulation in thermogenic flowers. Biosci. Rep. 21: 223–236.PubMedGoogle Scholar
  160. Seymour, R.S. & Schultze-Motel, P. 1996. Thermoregulating lotus flowers. Nature 383: 305.Google Scholar
  161. Seymour, R.S., Schultze-Motel, P., & Lamprecht, I. 1998. Heat production by sacred lotus flowers depends on ambient temperature, not light cycle. J. Exp. Bot. 49: 1213–1217.Google Scholar
  162. Shane, M.W., Cramer, M.D., Funayama-Noguchi, S., Millar, A.H., Day, D.A., & Lambers, H. 2004. Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea: expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol. 135: 549–560.PubMedCentralPubMedGoogle Scholar
  163. Shaw, M. & Samborski, D.J. 1957. The physiology of host-parasite relations. III. The pattern of respiration in rusted and mildewed cereal leaves. Can. J. Bot. 35: 389–407.Google Scholar
  164. Simons, B.H. & Lambers, H. 1999. The alternative oxidase: is it a respiratory pathway allowing a plant to cope with stress? In: Plant responses to environmental stresses: fom phytohormones to genome reorganization, H.R. Lerner (ed.). Plenum Press, New York, pp. 265–286.Google Scholar
  165. Simons, B.H., Millenaar, F.F., Mulder, L., Van Loon, L.C., & Lambers, H. 1999. Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv. tomato. Plant Physiol. 120: 529–538.PubMedCentralPubMedGoogle Scholar
  166. Soukup, A., Armstrong, W. Schreiber, L., Franke, R., Votrubová, O. 2007. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol. 173: 264–278.PubMedGoogle Scholar
  167. Stewart, C.R., Martin, B.A., Reding, L., & Cerwick, S. 1990. Respiration and alternative oxidase in corn seedlings tissues during germination at different temperatures. Plant Physiol. 92: 755–760.PubMedCentralPubMedGoogle Scholar
  168. Stiles, W. & Leach, W. 1936. Respiration in plants. Methuen & Co., London.Google Scholar
  169. Tan, K. & Keltjens, W.G. 1990a. Interaction between aluminium and phosphorus in sorghum plants. I. Studies with the aluminium sensitive sorghum genotype TAM428. Plant Soil 124: 15–23.Google Scholar
  170. Tan, K. & Keltjens, W.G. 1990b. Interaction between aluminium and phosphorus in sorghum plants. II. Studies with the aluminium tolerant sorghum genotype SC0 283. Plant Soil 124: 25–32.Google Scholar
  171. Tcherkez, G., Nogués, S., Bleton, J., Cornic, G., Badeck, F., & Ghashghaie, J. 2003. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol. 131: 237–244.PubMedCentralPubMedGoogle Scholar
  172. Tcherkez, G., Cornic, G., Bligny, R., Gout, E., & Ghashghaie, J. 2005. In vivo respiratory metabolism of illuminated leaves. Plant Physiol. 138: 1596–1606.PubMedCentralPubMedGoogle Scholar
  173. Torn, M.S. & Chapin III, F.S. 1993. Environmental and biotic controls over methane flux from arctic tundra. Chemosphere 26: 357–368.Google Scholar
  174. Tjoelker, M.G., Reich, P.B., & Oleksyn, J. 1999. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ. 22: 767–778.Google Scholar
  175. Uemura, S., Ohkawara, K., Kudo, G., Wada, N., & Higashi, S. 1993. Heat-production and cross-pollination of the Asian skunk cabbage Symplocarpus renifolius (Araceae). Am. J. Bot. 80: 635–640.Google Scholar
  176. Umbach, A.L., Wiskich, J.T., & Siedow, J.N. 1994. Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in soybean seedling mitochondria. FEBS Lett. 348: 181–184.PubMedGoogle Scholar
  177. Van der Werf, A., Kooijman, A., Welschen, R., & Lambers, H. 1988. Respiratory costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. Physiol. Plant 72: 483–491.Google Scholar
  178. Van der Werf, A., Welschen, R., & Lambers, H. 1992a. Respiratory losses increase with decreasing inherent growth rate of a species and with decreasing nitrate supply: a search for explanations for these observations. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 421–432.Google Scholar
  179. Van der Werf, A., Van den Berg, G., Ravenstein, H.J.L., Lambers, H., & Eising, R. 1992b. Protein turnover: A significant component of maintenance respiration in roots? In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 483–492.Google Scholar
  180. Van der Werf, A., Poorter, H., & Lambers, H. 1994. Respiration as dependent on a species' inherent growth rate and on the nitrogen supply to the plant. In: A whole-plant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds.). SPB Academic Publishing, The Hague, pp. 61–77.Google Scholar
  181. Vani, T. & Raghavendra, S. 1994. High mitochondrial activity but incomplete engagement of the cyanide-resistant alternative pathway in guard cell protoplasts of pea. Plant Physiol. 105: 1263–1268.PubMedCentralPubMedGoogle Scholar
  182. Vanlerberghe, G.C. & McIntosh, L. 1992. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco callus. Plant Physiol. 100: 115–119.PubMedCentralPubMedGoogle Scholar
  183. Vanlerberghe, G.C., Day, D.A., Wiskich, J.T., Vanlerberghe, A.E., & McIntosh, L. 1995. Alternative oxidase activity in tobacco leaf mitochondria. Dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol. 109: 353–361.PubMedCentralPubMedGoogle Scholar
  184. Veen, B.W. 1980. Energy costs of ion transport. In: Genetic engeneering of osmoregulation. Impact on plant productivity for food, chemicals and energy, D.W. Rains, R.C. Valentine & C. Holaender (eds.). Plenum Press, New York, pp. 187–195.Google Scholar
  185. Vertregt, N. & Penning de Vries, F.W.T. 1987. A rapid method for determining the efficiency of biosynthesis of plant biomass. J. Theor. Biol. 128: 109–119.Google Scholar
  186. Vidal, G., Ribas-Carbó, M., Garmier, M., Dubertret, G., Rasmusson, A.G., Mathieu, C., Foyer, C.H., & De Paepe, R. 2007. Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19: 640–655.PubMedCentralPubMedGoogle Scholar
  187. Villar, R., Robleto, J.R., De Jong, Y., & Poorter, H. 2006. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ. 29: 1629–1643.PubMedGoogle Scholar
  188. Wagner, A.M., Van Emmerik, W.A.M., Zwiers, J.H., & Kaagman, H.M.C.M. 1992. Energy metabolism of Petunia hybrida cell suspensions growing in the presence of antimycin A. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 609–614.Google Scholar
  189. Wang, X. & Curtis, P. 2002. A meta-analytical test of elevated CO2 effects on plant respiration. Plant Ecol. 161: 251–261.Google Scholar
  190. Wang, X., Lewis, J.D., Tissue, D.T., Seemann, J.R., & Griffin, K.L. 2001. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness. Proc. Natl. Acad. Sci. USA 98: 2479–2484.PubMedCentralPubMedGoogle Scholar
  191. Waring R.H. & Schlesinger, W. H. 1985. Forest ecosystems: concepts and management. Academic Press, Orlando.Google Scholar
  192. Watling, J.R., Robinson, S.A., & Seymour, R.S. 2006. Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol. 140: 1367–1373.PubMedCentralPubMedGoogle Scholar
  193. Wegner, L.H. & Raschke, K. 1994. Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels. Plant Physiol. 105: 799–813.PubMedCentralPubMedGoogle Scholar
  194. Williams, J.H.H. & Farrar, J.F. 1990. Control of barley root respiration. Physiol. Plant. 79: 259–266.Google Scholar
  195. Williams, K., Percival, F., Merino, J., & Mooney, H.A. 1987. Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ. 10: 725–734.Google Scholar
  196. Williams, K., Field, C.B., & Mooney, H.A. 1989. Relationship among leaf construction costs, leaf longevity and light environment in rain-forest plants of the genes Piper. Am. Nat. 133: 198–211.Google Scholar
  197. Williams, J.H.H., Winters, A.L., & Farrar, J.F. 1992. Sucrose: a novel plant growth regulator. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds.). SPB Academic Publishing, The Hague, pp. 463–469.Google Scholar
  198. Wright, I.J., Reich, P.B., & Westoby, M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15: 423–434.Google Scholar
  199. Wright, I.J., Reich, P.B., Atkin, O.K., Lusk, C.H., Tjoelker, M.G., & Westoby, M. 2006. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytol. 169: 309–319.PubMedGoogle Scholar
  200. Yan, F., Schubert, S., & Mengel, K. 1992. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol. 99: 415–421.PubMedCentralPubMedGoogle Scholar
  201. Yoshida, K., Terashima, I., & Noguchi, K., 2006. Distinct roles of the cytochrome pathway and alternative oxidase in leaf photosynthesis. Plant Cell Physiol. 47: 22–31.PubMedGoogle Scholar
  202. Yoshida, K., Terashima, I., & Noguchi, K. 2007. Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiol. 48: 606–614.PubMedGoogle Scholar
  203. Zacheo, G. & Molinari, S. 1987. Relationship between root respiration and seedling age in tomato cultivars infested by Meloidogyne incognita. Ann. Appl. Biol. 111: 589–595.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations