Advertisement

Ecosystem and Global Processes: Ecophysiological Controls

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons

Abstract

In previous chapters, we emphasized the integration among processes from molecular to whole-plant levels and considered the physiological consequences of interactions between plants and other organisms. In this chapter, we move up in scale to consider relationships between plant ecophysiological processes and those occurring at ecosystem to global scales. Plant species differ substantially in their responses to environment and to other organisms. It is not surprising that these physiological differences among plants contribute strongly to functional differences among ecosystems.

Keywords

Normalize Difference Vegetation Index Stomatal Conductance Relative Growth Rate Leaf Area Index Latent Heat Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Archer, S., Boutton, T.W., & Hibbard, K.A. 2001. Trees in grasslands: Biogeochemical consequences of woody plant expansion. In: Global biogeochemical cycles in the climate system, E.-D. Schulze, S.P. Harrison, M. Heimann, E.A. Holland, J. Lloyd, I.C. Prentice, & D. Schimel (eds.). Academic Press, San Diego, pp. 115–138.CrossRefGoogle Scholar
  2. Bala, G., Caldeira, K., Wickett, M., Phillips, T.J., Lobell, D.B. Delire, C., & Mirin A. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104: 6550–6555.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Balling, R.C. 1988. The climatic impact of a Sonoran vegetation discontinuity. Clim. Change 13: 99–109.CrossRefGoogle Scholar
  4. Betts, R.A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408: 187–190.PubMedCrossRefGoogle Scholar
  5. Bokhari, U.G. & Singh, J.S. 1975. Standing state and cycling of nitrogen in soil-vegetation components of prairie ecosystems. Ann. Bot. 39: 273–285.Google Scholar
  6. Bonan, G.B., Pollard, D., & Thompson, S.L. 1992. Effects of boreal forest vegetation on global climate. Nature 359: 716–718.CrossRefGoogle Scholar
  7. Bormann, F.H. & Likens, G.E. 1979. Pattern and process in a forested ecosystem. Springer-Verlag, New York.CrossRefGoogle Scholar
  8. Callaghan, T.V., Björn, L.O., Chernov, Y., Chapin, F.S. III, Christensen, T., Huntley, B., Ims, R., Jolly, D., Matveyeva, N., Panikov, N., Oechel, W.C., & Shaver, G.R., 2005. Arctic tundra and polar desert ecosystems. In: Arctic climate impact assessment. Cambridge University Press, Cambridge, pp. 243–352.Google Scholar
  9. Canadell, J.G., Le Quéré, C., Raupach, M.R., Field, C.B., Buitehuls, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A., & Marland, G. 2007a. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 104: 10288–10293.CrossRefGoogle Scholar
  10. Canadell, J.G., Pataki, D.E., Gifford, R., Houghton, R.A., Luo, Y., Raupach, M.R., Smith, P., & Steffen. W. 2007b. Saturation of the terrestrial carbon sink. In: Terrestrial ecosystems in a changing world, J.G. Canadell, D. Pataki, & L. Pitelka (eds.). Springer, Berlin, pp. 59–78.CrossRefGoogle Scholar
  11. Chapin III, F.S., 2003. Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change. Ann. Bot. 91: 455–463.PubMedCrossRefGoogle Scholar
  12. Chapin F.S. III, McFadden, J.P., & Hobbie, S.E. 1997. The role of arctic vegetation in ecosystem and global processes. In: Ecology of arctic environments, S.J. Woodin & M. Marquiss (eds.). Blackwell Scientific, Oxford, pp. 121–135.Google Scholar
  13. Chapin, F.S. III, Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H., McGuire, A.D., Rupp, T.S., Lynch, A.H., Schimel, J.P., Beringer, J., Chapman, W.L., Epstein, H.E., Euskirchen, E.S., Hinzman, L.D., Jia, G., Ping, C.-L., Tape. K.D., Thompson, C.D.C., Walker, D.A., & Welker J.M. 2005. Role of land-surface changes in arctic summer warming. Science 310: 657–660.PubMedCrossRefGoogle Scholar
  14. Chapin, F.S. III, Woodwell, G.M., Randerson, J.T., Lovett, G.M., Rastetter, E.B., Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., Aber, J.D., Cole, J.J., Goulden, M.L., Harden, J.W., Heimann, M., Howarth, R.W., Matson, P.A., McGuire, A.D., Melillo, J.M., Mooney, H.A., Neff, J.C., Houghton, R.A., Pace, M.L., Ryan, M.G., Running, S.W., Sala, O.E., Schlesinger, W.H., & Schulze E.-D. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9: 1041–1050.CrossRefGoogle Scholar
  15. Charney, J.G., Quirk, W.J., Chow, S.-H., & Kornfield, J. 1977. A comparative study of effects of albedo change on drought in semiarid regions. J. Atmos. Sci. 34: 1366–1385.CrossRefGoogle Scholar
  16. Choudhury, B.J. 1987. Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Rem. Sens. Env. 22: 209–233.CrossRefGoogle Scholar
  17. Ciais, P., Tans, P.P., Trolier, M., White, J.W.C., & Francey, R.J. 1995. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Nature 269: 1098–1102.Google Scholar
  18. Cole, D.W. & Rapp, M. 1981. Elemental cycling in forest ecosystems. In: Dynamic properties of forest ecosystems, D.E. Reichle (ed.). Cambridge University Press, Cambridge, pp. 341–409.Google Scholar
  19. Cramer, W., Bondeau, A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J.A., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, A., & Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol. 7: 357–373.CrossRefGoogle Scholar
  20. D’Antonio, C.M. & Vitousek, P.M. 1992. Biological invasions by exotic grasses, the grass-fire cycle, and global change. Annu. Rev. Ecol. Syst. 23: 63–87.Google Scholar
  21. Davidson, E.A. & Ackerman, I.L. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20: 161–164.CrossRefGoogle Scholar
  22. Davidson, E.A. Neill, C., Krusche, A.V., Ballester, V.V.R., Markewitz, D., & Figueiredo. R. de O. 2004. Loss of nutrients from terrestrial ecosystems to streams and the atmosphere following land use change in Amazonia. In: Ecosystems and land use change geophysical monograph series 153, R. DeFries, G. Asner, & R.H. Houghton (eds.). American Geophysical Union, Washington, pp. 147–158.CrossRefGoogle Scholar
  23. Denning, A.S., Fung, I.Y., & Randall, D. 1995. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376: 240–243.CrossRefGoogle Scholar
  24. Euskirchen, S.E., McGuire, A.D., & Chapin III, F.S. 2007. Energy feedbacks to the climate system due to reduced high latitude snow cover during 20th century warming. Global Change Biol. 13: 2425–2438.CrossRefGoogle Scholar
  25. Farquhar, G.D. 1989. Models of integrated photosynthesis of cells and leaves. Phil. Trans. R. Soc. Lond. Series B 323: 357–367.CrossRefGoogle Scholar
  26. Field, C.B. 1991. Ecological scaling of carbon gain to stress and resource availability. In: Integrated responses of plants to stress, H.A. Mooney, W.E. Winner, & E.J. Pell (eds.). Academic Press, San Diego, pp. 35–65.CrossRefGoogle Scholar
  27. Field, C.B., Lobell, D.B. Peters, H.A. & Chiariello, N.R. 2007. Feedbacks of terrestrial ecosystems to climate change. Annu. Rev. Environ. Res. 32: 1–29.CrossRefGoogle Scholar
  28. Foley, J.A., Kutzbach, J.E., Coe, M.T., & Levis, S. 1994. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371: 52–54.CrossRefGoogle Scholar
  29. Foley, J.A., Coe, M.T., Scheffer, M., & Wang, G. 2003a. Regime shifts in the Sahara and Sahel: Interactions between ecological and climatic systems in Northern Africa. Ecosystems 6: 524–539CrossRefGoogle Scholar
  30. Foley, J.A., Costa, M.H., Delire, C., Ramankutty, N., & Snyder, P. 2003b. Green surprise? How terrestrial ecosystems could affect Earth’s climate. Front. Ecol. Environ. 1: 38–44.Google Scholar
  31. Gedney, N., Cox, P.M., Betts, R.A., Boucher, O., Huntingford, C., & Stott P.A. 2006. Detection of a direct carbon dioxide effect in continental river runoff. Nature 439: 835–838.PubMedCrossRefGoogle Scholar
  32. Goetz, S.J., A.G. Bunn, G.A. Fiske, and R.A. Houghton. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 102: 13521–13525.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Goulden, M.L., Daube, B.C., Fan, S.-M., Sutton, D.J., Bazzaz, A., Munger, J.W., & Wofsy S.C. 1997. Physiological responses of a black spruce forest to weather. J. Geophys. Res. 102D: 28987–28996.CrossRefGoogle Scholar
  34. Goward, S.N., Tucker, C.J., & Dye, D.G. 1985. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64: 3–14.CrossRefGoogle Scholar
  35. Graetz, R.D. 1991. The nature and significance of the feedback of change in terrestrial vegetation on global atmospheric and climatic change. Climatic Change 18: 147–173.CrossRefGoogle Scholar
  36. Gray, J.T. & Schlesinger, W.H. 1981. Nutrient cycling in Mediterranean type ecosystems. In: Resource use by chaparral and matorral, P.C. Miller (ed.). Springer-Verlag, New York, pp. 259–285.CrossRefGoogle Scholar
  37. Grime, J.P. & Hunt, R. 1975. Relative growth rate: Its range and adaptive significance in a local flora. J. Ecol. 63: 393–422.CrossRefGoogle Scholar
  38. Harte, J. & Kinzig, A.P. 1993. Mutualism and competition between plants and decomposers: Implications for nutrient allocation in ecosystems. Am. Nat. 141: 829–846.PubMedCrossRefGoogle Scholar
  39. Henderson-Sellers, A., McGuffie, K., & Gross, C. 1995. Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increase. J. Climat. 8: 1738–1756.CrossRefGoogle Scholar
  40. IPCC. 2007. Climate Change 2007: The Physical Science Basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H.L. Miller (eds.). Cambridge University Press, Cambridge.Google Scholar
  41. Kasischke, E.S., Christensen, N.L., & Stocks, B.J. 1995. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5: 437–451.CrossRefGoogle Scholar
  42. Kasischke, E.S., & Turetsky, M.R. 2006. Recent changes in the fire regime across the North American boreal region- spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33: doi:10.1029/2006GL025677.Google Scholar
  43. Kauppi, P.E., Mielikäinen, K., & Kuusela, K. 1992. Biomass and carbon budget of European forests, 1971 to 1990. Science 256: 70–74.PubMedCrossRefGoogle Scholar
  44. Kays, S. & Harper, J.L. 1974. The regulation of plant and tiller density in a grass sward J. Ecol. 62: 97–105.CrossRefGoogle Scholar
  45. Kelliher, F.M., Leuning, R., Raupach, M.R., & Schulze, E.-D. 1995. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 73: 1–16.CrossRefGoogle Scholar
  46. Kurz, W.A. & Apps, M.J. 1995. An analysis of future carbon budgets of Canadian boreal forests. Water Air Soil Poll. 82: 321–331.CrossRefGoogle Scholar
  47. Liu, H.P., Randerson, J.T., Lindfors, J., &. Chapin, F.S. III. 2005. Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J. Geophys. Res. 110: D13101, doi:13110.11029/12004JD005158.Google Scholar
  48. Lloyd, A.H., Rupp, T.S., Fastie, C.L., & Starfield, A.M. 2003. Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. J. Geophys. Res. 107: NO. D2, 8161, doi:10.1029/2001JD000852.Google Scholar
  49. Lynch, J.A., Clark, J.S., Bigelow, N.H., Edwards, M.E., & Finney, B.P. 2002. Geographical and temporal variations in fire history in boreal ecosystems of Alaska. J. Geophys. Res. 108: 8152, doi:1029/2001JD000332.CrossRefGoogle Scholar
  50. McGuire, A.D., Chapin III, F.S., Walsh, J.E., & Wirth C. 2006. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system. Annu. Rev. Environ. Res. 31: 61–91.CrossRefGoogle Scholar
  51. Milich, L. & Weiss, E. 2000. GAC NDVI interannual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects. Int. J. Rem. Sens. 21: 235–260.CrossRefGoogle Scholar
  52. Monteith, J.L. 1977. Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond. B 281: 277–294.CrossRefGoogle Scholar
  53. Niklas, K.J. & Enquist E.J. 2001. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc. Natl. Acad. Sci. USA 98: 2922–2927.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Odum, E.P. 1969. The strategy of ecosystem development. Science 164: 262–270.PubMedCrossRefGoogle Scholar
  55. Oechel, W.C., Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G., & Grulke, N. 1993. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361: 520–523.CrossRefGoogle Scholar
  56. Payette, S. & Filion, L. 1985. White spruce expansion at the tree line and recent climatic change. Can. J. For. Res. 15: 241–251.CrossRefGoogle Scholar
  57. Randerson, J.T., Liu, H., Flanner, M., Chambers, S.D., Jin, Y., Hess, P.G., Pfister, G., Mack, M.C., Treseder, K.K,. Welp, L., Chapin, F.S. III, Harden, J.W., Goulden, M.L., Lyons, E., Neff, J.C., Schuur, E.A.G., & Zender, C. 2006. The impact of boreal forest fire on climate warming. Science 314: 1130–1132.2PubMedCrossRefGoogle Scholar
  58. Reich, P.B. & Oleksyn, J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 101: 11001–11006.Google Scholar
  59. Robles, M. & Chapin III, F.S. 1995. Comparison of the influence of two exotic species on ecosystem processes in the Berkeley Hills. Madroño 42: 349–357.Google Scholar
  60. Running, S.W. & Coughlan, J.C. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Modelling 42: 125–154.CrossRefGoogle Scholar
  61. Sala, O.E., Parton, W.J., Joyce, L.A., & Lauenroth, W.K. 1988. Primary production of the central grassland region of the United States. Ecology 69: 40–45.CrossRefGoogle Scholar
  62. Schimper, A.F.W. 1898. Pflanzengeographie auf physiologischer Grundlage. Fisher, Jena.Google Scholar
  63. Schlesinger, W.H. 1991. Biogeochemistry: An analysis of global change. Academic Press, San Diego.Google Scholar
  64. Schoennagel, T., Veblen, T.T., & Romme W.H. 2004. The interaction of fire, fuels, and climate across Rocky Mountain forests. BioSci. 54: 661–676.CrossRefGoogle Scholar
  65. Schulze, E.-D. & Hall, A.E. 1982. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of plant physiology, Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 181–230.Google Scholar
  66. Schulze, E.-D., Kelliher, F.M., Körner, C., Lloyd, J., & Leuning, R. 1994. Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25: 629–660.CrossRefGoogle Scholar
  67. Schuur, E.A.G. 2003. Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology 84: 1165–1170.CrossRefGoogle Scholar
  68. Shukla, J., Nobre, C., & Sellers, P. 1990. Amazon deforestation and climate change. Science 247: 1322–1325.PubMedCrossRefGoogle Scholar
  69. Stern, N. 2006. The Stern review: The economics of climate change. Cambridge University Press, Cambridge.Google Scholar
  70. Tans, P.P., Fung, I.Y., & Takahashi, T. 1990. Observational constraints on the global CO2 budget. Science 247: 1431–1438.PubMedCrossRefGoogle Scholar
  71. Tilman, D. 1988. Plant strategies and the dynamics and function of plant communities. Princeton University. Press, Princeton.Google Scholar
  72. Van Cleve, K., Chapin III, F.S., Dryness, C.T., & Viereck, L.A. 1991. Element cycling in taiga forest: State-factor control. BioSci. 41: 78–88.CrossRefGoogle Scholar
  73. Vandermeer, J.H. & Goldberg, D.E. 2003. Population ecology. Princeton University Press, Princeton.Google Scholar
  74. Vitousek, P.M. 2004. Nutrient cycling and limitation: Hawaii as a model system. Princeton University Press, Princeton.Google Scholar
  75. Vitousek, P.M. & Howarth, R.W. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115.CrossRefGoogle Scholar
  76. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., & Tilman, G.D. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7: 737–750.Google Scholar
  77. Walsh, J.E., Zhou, X., Portis, D., & Serreze, M. 1994. Atmospheric contribution to hydrologic variations in the arctic. Atmosphere-Ocean 32: 733–755.CrossRefGoogle Scholar
  78. Wardle, D.A., Walker, L.R., & Bardgett, R.D. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305: 509–513.PubMedCrossRefGoogle Scholar
  79. Weller, D.E. 1987. A reevaluation of the –3/2 power rule of plant self-thinning. Ecol. Monogr. 57: 23–43.CrossRefGoogle Scholar
  80. Wofsy, S.C., Goulden, M.L., Munger, J.W., Fan, S.-M., Bakwin, P.S., Daube, B.C., Bassow, S.L., & Bazzaz, F.A. 1993. Net exchange of CO2 in a mid-latitude forest. Science 260: 1314–1317.PubMedCrossRefGoogle Scholar
  81. Woodward, F.I. & Lomas, M.R. 2004. Vegetation dynamics: Simulating responses to climatic change. Biol. Rev. 79: 643–670.PubMedCrossRefGoogle Scholar
  82. Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. 1963. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14: 107–129.Google Scholar
  83. Zimov, S.A., Chuprynin, V.I., Oreshko, A.P., Chapin III, F.S., Reynolds. J.F., & Chapin, M.C. 1995. Steppe-tundra transition: An herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146: 765–794.CrossRefGoogle Scholar
  84. Zimov S.A., Davidov S.P., Voropaev Y.V., Prosiannikov S.F., Semiletov I.P., Chapin M.C., & Chapin F.S. III. 1996. Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Clim. Change 33: 111–120.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations