• Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons

Decomposition of plant litter involves the physical and chemical processes that reduce litter to CO2, water, and mineral nutrients. It is a key process in the nutrient cycle of most terrestrial ecosystems, and the amount of carbon returned to the atmosphere by decomposition of dead organic matter is an important component of the global carbon budget (Sect. 2.6 of Chapter 10B on ecosystem and global processes; Chapin et al. 2002).


Root Exudate Litter Decomposition Specific Leaf Area Litter Quality Plant Litter 


  1. Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79: 439–449.CrossRefGoogle Scholar
  2. Aerts, R. & De Caluwe, H. 1997. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78: 244–260.CrossRefGoogle Scholar
  3. Attiwell, P.M. & Adams, M.A. 1993. Nutrient cycling in forests. New Phytol. 124: 561–582.CrossRefGoogle Scholar
  4. Austin, A.T. & Vivanco, L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442: 555–558PubMedCrossRefGoogle Scholar
  5. Baldwin, I.T., Olson, R.K., & Reiners, W.A. 1983. Protein-binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15: 419–423.CrossRefGoogle Scholar
  6. Berendse, F., Bobbink, R., & Rouwenhorst, G. 1989. A comparative study on nutrient cycling in wet heathland ecosystems. II. Litter decomposition and nutrient mineralization. Oecologia 78: 338–348.CrossRefGoogle Scholar
  7. Berg, B. & Staaf, H. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 33: 163–178.Google Scholar
  8. Bottner, P., Cortez, J., & Sallih, Z. 1991. Effect of living roots on carbon and nitrogen of the soil microbial biomass. In: Plant root growth, D. Atkinson (ed.). Blackwell Scientific, London, pp. 201–210.Google Scholar
  9. Bradley, R.L. & Fyles, J.W. 1996. Interactions between tree seedling roots and humus forms in the control of soil C and N cycling. Biol. Fertil. Soils 23: 70–79.CrossRefGoogle Scholar
  10. Bryant, J.P., Chapin III, F.S., & Klein, D.R.. 1983. Carbon/nutrient balance of boreal plants in relation to herbivory. Oikos 40: 357–368.CrossRefGoogle Scholar
  11. Carney, K.M., Hungate, B.A., Drake, B.G., & Megonigal, J.P. 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 104: 4990–4995.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chambers, J.Q., Higuchi, N., Schimel, J.P., Ferreira, L.V., & Melack, J.M. 2000. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122: 380–388CrossRefGoogle Scholar
  13. Chapin III, F.S., Matson, P.A., & Mooney, H.A. 2002. Principles of terrestrial ecosystem ecology. Springer-Verlag, New York.Google Scholar
  14. Cheng, W. & Coleman, D.C. 1990. Effect of living roots on soil organic matter decomposition. Soil Biol. Biochem. 22: 781–787.CrossRefGoogle Scholar
  15. Clarholm, M. 1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17: 181–187.CrossRefGoogle Scholar
  16. Colpaert, J.V. & Van Tichelen, K.K. 1996. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes. New Phytol. 134: 123–132.CrossRefGoogle Scholar
  17. Cornelissen, J.H.C. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84: 573–582.CrossRefGoogle Scholar
  18. Cornelissen, J.H.C. & Thompson, K. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135: 109–114.CrossRefGoogle Scholar
  19. Cornelissen, J.H.C., Perez-Harguindeguy, N., Diaz, S., Grime, J.P., Marzana, B., Cabido, M., Vendramini, F., Cerabolini, B. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143: 191–200.CrossRefGoogle Scholar
  20. Cornelissen, J.H.C., Aerts, R., Cerabolini, B., Werger, M.J.A., & Van der Heijden, M.G.A. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia. 129: 611–619.PubMedCrossRefGoogle Scholar
  21. Cornelissen, J.H.C., Quested, H.M., van Logtestijn, R.S.P., Pérez-Harguindeguy, N., Gwynn-Jones, D., Díaz, S., Callaghan, T.V., Press M.C., & Aerts, R. 2006. Foliar pH as a new plant trait: Can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types? Oecologia 147: 315–326.PubMedCrossRefGoogle Scholar
  22. Edwards, N.T. & Sollins, P. 1973. Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology 54: 406–412.CrossRefGoogle Scholar
  23. Eaton, J.M. & Lawrence, D. 2006. Woody debris stocks and fluxes during succession in a dry tropical forest. For. Ecol. Manage. 232: 46–55.CrossRefGoogle Scholar
  24. Farrar, J., Hawes, M., Jones, D. & Lindow, S. 2003. How roots control the flux of carbon to the rhizosphere. Ecology 84: 827–833.CrossRefGoogle Scholar
  25. Fisher, J.L., Veneklaas, E.J., Lambers, H., & Loneragan, W.A. 2006. Enhanced soil and leaf nutrient status of a Western Australian Banksia woodland community invaded by Ehrharta calycina and Pelargonium capitatum. Plant Soil 284: 253–264.CrossRefGoogle Scholar
  26. Flanagan, P.W. & Van Cleve, K. 1983. Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13: 795–817.CrossRefGoogle Scholar
  27. Fox, R.H., Myers, R.J.K., & Vallis, I. 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129: 251–259.Google Scholar
  28. Garnier, E., Cortez, J., Billes, G., Navas, M.L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., & Toussaint, J.P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630– 2637.CrossRefGoogle Scholar
  29. Gershenzon, J. 1984. Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress, B.N. Timmermann, C. Steelink, & F.A. Loewus (eds.). Plenum Press, New York, pp. 273–321.CrossRefGoogle Scholar
  30. Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climate warming. Ecol. Appl. 1: 182–195.CrossRefGoogle Scholar
  31. Griffiths, B.S., Welschen, R., Van Arendonk, J.J.C.M., & Lambers, H. 1992. The effects of nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. Oecologia 91: 253–259.CrossRefGoogle Scholar
  32. Harris, M.M. & Riha, S.J. 1991. Carbon and nitrogen dynamics in forest floor during short-term laboratory incubations. Soil Biol. Biochem. 23: 1035–1041.CrossRefGoogle Scholar
  33. Hättenschwiler, S. & Vitousek, P.M. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 15: 238–243.PubMedCrossRefGoogle Scholar
  34. Hobbie, S.E. 1992. Effects of plant species on nutrient cycling. Trends Ecol. Evol. 7: 336–339.PubMedCrossRefGoogle Scholar
  35. Hobbie, S.E. 1995. Direct and indirect effects of plant species on biogeochemical processes in arctic ecosystems. In: Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences, F.S. Chapin III & C. Körner (eds.). Springer-Verlag, Berlin, pp. 213–224.Google Scholar
  36. Hobbie, S.E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66: 503–522.CrossRefGoogle Scholar
  37. Hungate, B.A., Canadell, J.C., & Chapin III, F.S. 1996. Plant species mediate changes in microbial N in response to elevated CO2. Ecology 77: 2505–2515.CrossRefGoogle Scholar
  38. Johnson, L.C. & Damman, A.W.H. 1993. Decay and its regulation in Sphagnum peatlands. Adv. Bryol. 5: 249–296.Google Scholar
  39. Kandil, F.E., Grace, M.H., Seigler, D.S., & Cheeseman, J.M. 2004. Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees 18: 518–528.CrossRefGoogle Scholar
  40. Leyval, C. & Berthelin, J. 1993. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol. Fertil. Soils 15: 259–267.CrossRefGoogle Scholar
  41. Middleton, B.A. & McKee, K.L. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J. Ecol. 89: 818–828.CrossRefGoogle Scholar
  42. Mitchell, M. & Fuller, R. 1988. Models of sulfur dynamics in forest and grassland ecosystems with emphasis on soil processes. Biogeochemistry 5: 133–163.CrossRefGoogle Scholar
  43. Nguyen, C. 2003. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23: 375–396.CrossRefGoogle Scholar
  44. Norby, R.J., Cotrufo, M.F., Ineson, P., O’Neill, E.G., & Canadell, J.G. 2001. Elevated CO2, litter chemistry, and decomposition: A synthesis. Oecologia 127: 153–165.PubMedCrossRefGoogle Scholar
  45. Northup, R.R., Yu, Z., Dahlgren, R.A., & Vogt, K.A. 1995. Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229.CrossRefGoogle Scholar
  46. Norton, J.M. & Firestone, M.K. 1996. N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol. Biochem. 28: 351–362.CrossRefGoogle Scholar
  47. Parmelee, R.W., Ehrenfeld, J.G., & Tate, R.L., III 1993. Effects of pine roots on microorganisms, fauna, and nitrogen availability in two soil horizons of a coniferous forest spodosol. Biol. Fert. Soils 15: 113–119.CrossRefGoogle Scholar
  48. Paul, E.A. & Clark, F.E. 1989. Soil microbiology and biochemistry. Academic Press, San Diego.Google Scholar
  49. Pérez-Harguindeguy, N., Diaz, S., Cornelissen, J.H.C., Vendramini, F., Cabido, M., & Castellanos, A. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218: 21–30.CrossRefGoogle Scholar
  50. Read, D.J. & Perez-Moreno, J. 2003. Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance? New Phytol. 157: 475–492.CrossRefGoogle Scholar
  51. Ruess, R.W., Van Cleve, K., Yarie, J., & Viereck, L.A. 1996. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior taiga forests on the Alaskan interior. Can. J. For. Res. 26: 1326–1336.CrossRefGoogle Scholar
  52. Rygiewicz, P.T. & Andersen, C.P. 1994. Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369: 58–60.CrossRefGoogle Scholar
  53. Schimel JP, Bennett J. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85: 591–602.CrossRefGoogle Scholar
  54. Silver, W.L. & Miya, R.K. 2001. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 129: 407–419.Google Scholar
  55. Swift, M.J., Heal, O.W., & Anderson, J.M. 1979. Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford.Google Scholar
  56. Van Breemen, N. 1993. Soils as biotic constructs favouring net primary productivity. Geoderma 57: 183–211.CrossRefGoogle Scholar
  57. Van Groenigen, K.-J., Six, J., Hungate, B.A., De Graaff, M.-A., Van Breemen, N., & Van Kessel, C. 2006. Element interactions limit soil carbon storage. Proc. Natl. Acad. Sci. USA 103: 6571–6574.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Van Veen, J.A., Merckx, R., & Van de Geijn, S.C. 1989. Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115: 179–188.CrossRefGoogle Scholar
  59. Van Vuuren, Aerts, R., Berendse, F., & De Visser, W. 1992. Nitrogen mineralization in heathland ecosystems dominated by different plant species. Biogeochemistry 16: 151–166.CrossRefGoogle Scholar
  60. Verhoeven, J.T.A. & Toth, E. 1995. Decomposition of Carex and Sphagnum litter in fens: Effect of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem. 27: 271–275.CrossRefGoogle Scholar
  61. Wilschke, J., Hoppe, E., & Rudolph, H.-J. 1990. Biosynthesis of sphagnum acid. In: Bryophytes: Their chemistry and chemical taxonomy, H.D. Zinsmeister & R. Mues (eds.). Oxford Science Publications, Oxford, pp. 253–263.Google Scholar
  62. Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Groom, P.K., Hikosaka, K., Lee, W., Lusk, C.H., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Warton, D.I., & Westoby, M. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecol. Biogeog. 14: 411–421.CrossRefGoogle Scholar
  63. Zak, D.R., Blackwood, C.B., & Waldrop, M.P. 2006. A molecular dawn for biogeochemistry. Trends Ecol. Evol. 21: 288–295.PubMedCrossRefGoogle Scholar
  64. Zhu, W. & Ehrenfeld, J.G. 1996. The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil. Plant Soil 179: 109–118.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations