Advertisement

Carnivory

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons

Since the classic work of Charles and Francis Darwin (1875, 1878) well over a century ago on the carnivorous habit of Drosera, considerable information has accumulated on the significance of captured animal prey in the nutrition of carnivorous plants. Carnivory includes the catching and subsequent digestion of the freshly trapped prey. This is a common form of nutrition in the animal kingdom, but is rare in plants, with only about 800 species from 10 families (Table 9F.1).

Keywords

Carnivorous Species Carnivorous Plant Pitcher Plant Trap Door Suction Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamec, L. 2003. Zero water flows in the carnivorous genus Genlisea . Carniv. Plant Newslett. 32: 46–48.Google Scholar
  2. Adams, R.M. & Smith, G.W. 1977. An S.E.M. survey of the five carnivorous pitcher plant genera. Am. J. Bot. 64: 265–272.CrossRefGoogle Scholar
  3. Adlassnig, W., Peroutka, M., Lambers, H. &. Lichtscheidl, I.L. 2005. The roots of carnivorous plants. Plant Soil 274: 127–140.CrossRefGoogle Scholar
  4. Albert, V.A., Williams, S.E., & Chase, M.W. 1992. Carnivorous plants: phylogeny and structural evolution. Science 257: 1491–1495.PubMedCrossRefGoogle Scholar
  5. Anderson, B. & Midgley, J. 2002. It takes two to tango but three is a tangle: mutualists and cheaters on the carnivorous plant Roridula. Oecologia 132: 369–373.CrossRefGoogle Scholar
  6. Barber, J.T. 1978. Capsella bursa-pastoris seeds. Are they “carnivorous”? Carniv. Plant Newslett. 7: 39–42.Google Scholar
  7. Barthlott, W., Porembski, S., Fischer, E., & Gemmel, B. 1998. First protozoa-trapping plant found. Nature 392: 447.CrossRefGoogle Scholar
  8. Cameron, K.M.,Wurdack, K.J., & Jobson, R.J. 2002. Molecular evidence for the common origin of snap-traps among carnivorous plants. Am. J. Bot. 89: 1503–1509.PubMedCrossRefGoogle Scholar
  9. Chandler, G.E. & Andersson, J.W. 1976. Studies on the nutrition and growth of Drosera species with reference to the carnivorous habit. New Phytol. 76: 129–141.CrossRefGoogle Scholar
  10. Christy, M. 1923. The common teasel as a carnivorous plant. J. Bot . 61: 33–45.Google Scholar
  11. Darnowski, D.W., Carroll, D.M., Płachno, B.J., Kabanoff, E., & Cinnamon, E. 2006. Evidence of protocarnivory in triggerplants (Stylidium spp.; Stylidiaceae). Plant Biol. 8: 805–812.PubMedCrossRefGoogle Scholar
  12. Darwin, C. 1875. Insectivorous plants. Murray, London.CrossRefGoogle Scholar
  13. Darwin, F. 1878. Experiments on the nutrition and growth of Drosera rotundifolia . J. Linn. Soc. Bot. 17: 17–23.CrossRefGoogle Scholar
  14. Dixon, K.W., Pate, J.S., & Bailey, W.J. 1980. Nitrogen nutrition of the tuberous sundew Drosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by glandular leaves. Aust. J. Bot. 28: 283–297.CrossRefGoogle Scholar
  15. Dress, W.J., Newell, S.J., Nastase, A.J., & Ford, J.C. 1997. Analysis of amino acids in nectar from pitchers of Sarracenia purpurea (Sarraceniaceae). Am. J. Bot. 84: 1701–1706.PubMedCrossRefGoogle Scholar
  16. Ellison, A.M. 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol. 8: 740–747.PubMedCrossRefGoogle Scholar
  17. Ellison, A.M. & Farnsworth, E.J. 2005. The cost of carnivory for Darlingtonia californica (Sarraceniaceae): evidence from relationships among leaf traits. Am. J. Bot. 92: 1085–1093.PubMedCrossRefGoogle Scholar
  18. Ellison, A.M. & Gotelli, N.J. 2001. Evolutionary ecology of carnivorous plants Trends Ecol. Evol. 16: 623–629.CrossRefGoogle Scholar
  19. Fagerberg, W.R. & Howe, D.G. (1996) A quantitative study of tissue dynamics in Venus’ fly trap Dionaea muscipula (Droseraceae). II. Trap reopening. Am. J. Bot. 83: 836–842.CrossRefGoogle Scholar
  20. Fineran BA. 1985. Glandular Trichomes in Utricularia : a review of their structure and function. Isr. J. Bot. 34 : 295–330.Google Scholar
  21. Gallie, D.R. & Chang, S.-C. 1997. Signal transduction in the carnivorous plant Sarracenia purpurea . Regulation of secretory hydrolase expression during development and in response to resources. Plant Physiol. 115: 1461–1471.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hodick, D. & Sievers, A. 1988. The action potential of Dionaea muscipula Ellis. Planta 174: 8–18.PubMedCrossRefGoogle Scholar
  23. Hodick, D. & Sievers, A. 1989. On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179: 32–42.PubMedCrossRefGoogle Scholar
  24. Jacobson, R.L.1965. Receptor response in Venus’s fly-trap. J. Gen. Physiol. 49: 117–129.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jobson, R.W., Playford, J.,Cameron, K.M., & Albert,V.A. 2003. Molecular phylogenetics of Lentibulariaceae inferred from plastid rps 16 intron and trn L-F DNA sequences: implications for character evolution and biogeography. Syst. Bot. 28: 157–171.Google Scholar
  26. Juniper, B.E., Robins, R.J., & Joel, D.M. (1989.) The carnivorous plants. Academic Press, London.Google Scholar
  27. Karlsson, P.S. & Carlsson, B. 1984. Why does Pinguicula vulgaris L. trap insects? New Phytol. 97: 25–30CrossRefGoogle Scholar
  28. Karlsson, P.S. & Pate, J.S. 1992. Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorus economy of pygmy species of Drosera . Oecologia 92: 8–13.CrossRefGoogle Scholar
  29. Karlsson, P.S., Nordell, K.O., Carlsson, B.A., & Svensson, B.M. 1991. The effect of soil nutrient status on prey utilization in four carnivorous plants. Oecologia 86: 1–7.CrossRefGoogle Scholar
  30. Lüttge, U. (1983) Ecophysiology of carnivorous plants. In: Encyclopedia of plant physiology, N.S. Vol. 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 489–517.Google Scholar
  31. Mabberley, D.J. 2000. The Plant-book. A portable dictionary of the higher plants. Cambridge University Press, New York.Google Scholar
  32. Millett, J. Jones, R.I., & Waldron, S. 2003. The contribution of insect prey to the total nitrogen content of sundews (Drosera spp.) determined in situ by stable isotope analysis New Phytol. 158 : 527–534.Google Scholar
  33. Pate, J.S. & Dixon, K.W. 1978. Mineral nutrition of Drosera erythrorhiza Lindl. with special reference to its tuberous habit. Aust. J. Bot. 26: 455–464.CrossRefGoogle Scholar
  34. Płachno, B.J. & Jankun, A. 2004. Transfer cell wall architecture in secretory hairs of Utricularia intermedia . Acta Biol. Crocov. Ser. Bot. 46: 193–200.Google Scholar
  35. Płachno, B.J., Adamus, K., Faber, J., and Kozłowski, J. 2005. Feeding behaviour of carnivorous Genlisea plants in the laboratory. Acta Bot. Gall. 152 : 159–164.CrossRefGoogle Scholar
  36. Płachno, B.J., Kozieradzka-Kiszkurno, M. & Swiatek. P. 2007. Functional ultrastructure of Genlisea (Lentibulariaceae) digestive hairs. Ann. Bot. 100: 195–203.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Richards, J.H. 2001. Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? Am. J. Bot. 88: 170–176.PubMedCrossRefGoogle Scholar
  38. Robins, R. J. 1976. The nature of the stimuli causing digestive juice secretion in Dionaea muscipula Ellis (Venus’s flytrap). Planta 128: 263–265.PubMedCrossRefGoogle Scholar
  39. Schulze, W., Schulze, E.-D., Pate, J.S., & Gillison, A.N. (1997) The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis , Cephalotus follicularis and Darlingtonia californica . Oecologia 112: 464–471.CrossRefGoogle Scholar
  40. Sirová, D., Adamec, L., & Vrba, J. 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia . New Phytol. 159: 669–675.CrossRefGoogle Scholar
  41. Sorenson, D.R. & Jackson, W.T. 1968. The utilization of paramecia by the carnivorous plant Utricularia gibba . Planta 83: 166–170.PubMedCrossRefGoogle Scholar
  42. Spomer, G.G. 1999. Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. Int. J. Plant Sci. 160: 98–101.CrossRefGoogle Scholar
  43. Sydenham, P.H. & Findlay, G.P. 1975. Transport of solutes and water by resetting bladders of Utricularia Aust. J. Plant Physiol. 2: 335–351.Google Scholar
  44. Thum, M. 1988. The significance of carnivory for the fitness of Drosera in its natural habitat. 1. The reactions of Drosera intermedia and D. rotundifolia to supplementary insect feeding. Oecologia 75: 472–480.CrossRefGoogle Scholar
  45. Williams, S.E. 1976. Comparative sensory physiology of the Droseraceae—the evolution of a plant sensory system. Proc. Am. Phil. Soc. 120: 187–204.Google Scholar
  46. Williams, S.E. & Spanswick, R.M. 1976. Propagation of the neuroid action potential of the carnivorous plant Drosera . J. Comp. Physiol. A: Neuroethol. Sens. Neur. Behav. Physiol. 108: 211–223.CrossRefGoogle Scholar
  47. Zamora, R., Gomez, J.M. & Hodar, J.A. 1997. Responses of a carnivorous plant to prey and inorganic nutrients in a Mediterranean environment. Oecologia 111: 443–451.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations