Parasitic Associations

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons

We have so far mainly dealt with autotrophic plants that assimilate CO2 from the atmosphere into complex organic molecules and acquire nutrients and water from the rhizosphere. There are also fascinating higher plant species that lack the capacity to assimilate sufficient CO2 to sustain their growth and that cannot absorb nutrients and water from the rhizosphere in sufficient quantities to reproduce successfully. These plants comprise approximately 1% of all flowering plant species; they are parasitic and rely on a host plant to provide them with the materials they cannot acquire from their abiotic environment (Kuijt 1969).


Arbuscular Mycorrhizal Fungus Parasitic Plant White Lupin Sapwood Area Trap Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackroyd, R.D. & Graves, J.D. 1997. The regulation of the water potential gradient in the host and parasite relationship between Sorghum bicolor and Striga hermonthica. Ann. Bot. 80: 649–656.CrossRefGoogle Scholar
  2. Akiyama, K., Matsuzaki, K., & Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.PubMedCrossRefGoogle Scholar
  3. Albrecht, H., Yoder, J.I., & Phillips, D.A. 1999. Flavonoids promore haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol. 119: 585–591.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Atsatt, P.R. 1983. Host-parasite interactions in higher plants. In: Encyclopedia of plant physiology, N.S. Vol. 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 519–535.Google Scholar
  5. Ayongwa, G.C., Stomph, T.J., Emechebe, A.M., & Kuyper, T.W. 2006. Root nitrogen concentration of sorghum above 2% produces least Striga hermonthica seed stimulation. Ann. Appl. Biol. 149: 255–262.CrossRefGoogle Scholar
  6. Babiker, A.G.T., Ejeta, G., Butler, L.G., & Woodson, W.R. 1993. Ethylene biosynthesis and strigol-induced germination of Striga asiatica. Physiol. Plant. 88: 359–365.CrossRefGoogle Scholar
  7. Bannister, P. 1989. Nitrogen concentration and mimicry in some New Zealand mistletoes. Oecologia 79: 128–132.CrossRefGoogle Scholar
  8. Bardgett, R.D., Smith, R.S., Shiel, R.S., Peacock, S., Simkin, J.M., Quirk, H., & Hobbs, P.J. 2006. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439: 969–972.PubMedCrossRefGoogle Scholar
  9. Birschwilks, M., Haupt, S., Hofius, D., & Neumann, S. 2006. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J. Exp. Bot. 57: 911–921.PubMedCrossRefGoogle Scholar
  10. Bouwmeester, H.J., Roux, C., Lopez-Raez, J.A., & Becard, G. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12: 224–230.PubMedCrossRefGoogle Scholar
  11. Calladine, A. & Pate, J.S. 2000. Hastorial structure and functioning of the root hemiparasitic tree Nuytsia floribunda (Labill.) R.Br. and water relationships with its hosts. Ann. Bot. 85: 723–731.CrossRefGoogle Scholar
  12. Cameron, D.D., Coats, A.M., & Seel, W.E. 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Ann. Bot. 98: 1289–1299.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Cechin, I. & Press, M.C. 1993. Nitrogen relations of the sorghum-Striga hermonthica host-parasite association: growth and photosynthesis. Plant Cell Environ. 16: 237–247.CrossRefGoogle Scholar
  14. Davidson, N.J. & Pate, J.S. 1992. Water relations of the mistletoe Amyema fitzgeraldii and its host Acacia acuminata. J. Exp. Bot. 43: 1459–1555.CrossRefGoogle Scholar
  15. Davidson, N.J., True, K.C., & Pate, J.S. 1989. Water relations of the parasite: host relationship between the mistletoe Amyema linophyllum (Fenzl) Tieghem and Casuarina obesa Miq. Oecologia 80: 321–330.CrossRefGoogle Scholar
  16. Dawson, J.H., Musselman, L.J., Wolswinkel, P., & Dörr, I. 1994. Biology and control of Cuscuta. In: Reviews of weed science, Vol. 6, S.O. Duke (ed). Imperial Printing Company, Champaign, pp. 265–317.Google Scholar
  17. Ehleringer, J.R., Schulze, E.D., Ziegler, H., Lange, O.L., Farquhar, G.D., & Cowan, I.R. 1985. Xylem-tapping mistletoes: water or nutrient parasites? Science 227: 1479–1481.PubMedCrossRefGoogle Scholar
  18. Ehleringer, J.R., Ullmann, I., Lange, O.L., Farquhar, G.D., Cowan, G.D., & Schulze, E.-D. 1986. Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70: 234–237.CrossRefGoogle Scholar
  19. Einhellig, F.A. & Souza, I.F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18: 1–11.PubMedCrossRefGoogle Scholar
  20. Estabrook, E.M. & Yoder, J.I. 1998. Plant-plant communication: Rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol. 116: 1–7.PubMedCentralCrossRefGoogle Scholar
  21. Field, T.S. & Brodrib, T.J. 2005. A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell Environ. 28: 1316–1325.CrossRefGoogle Scholar
  22. Govier, R.N., Brown, J.G.S., & Pate, J.S. 1968. Hemiparasitic nutrition in angiosperms. II. Root haustoria and leaf glands of Odontites verna (Bell.) Dum. and their relevance to the abstraction of solutes from the host. New Phytol. 67: 863–972.CrossRefGoogle Scholar
  23. Graves, J.D., Press, M.C., Smith, S., & Stewart, G.R. 1992. The carbon canopy economy of the association between cowpea and the parasitic angiosperm Striga gesnerioides. Plant Cell Environ. 15: 283–288.CrossRefGoogle Scholar
  24. Gurney, A.L., Grimanelli, D., Kananpiu, F., Hoisington, D., Scholes, J.D., & Press, M.C.. 2003. Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol. 160: 557–568.CrossRefGoogle Scholar
  25. Hibberd, J.M., Quick, W.P., Press, M.C., & Scholes, J.D. 1998. Can source-sink relations explain responses of tobacco to infection by the root holoparasitic angiosperm Orobanche cernua? Plant Cell Environ. 21: 333–340.CrossRefGoogle Scholar
  26. Hibberd, J.M., Quick, W.P., Press, M.C., Scholes, J.D., & Jeschke, W.D. 1999. Solute flux from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ. 22: 937–947.CrossRefGoogle Scholar
  27. Jeschke, W.D. & Hilpert, A. 1997. Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa-Ricinus communis. Plant Cell Environ. 20: 47–56.CrossRefGoogle Scholar
  28. Jeschke, W.D., Bäumel, P., Räth, N., Czygan, F.-C., & Proksch, P. 1994. Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus. L. II. Flows between host and parasite and within parasitized host. J. Exp. Bot. 45: 801–812.CrossRefGoogle Scholar
  29. Jeschke, W.D., Bäumel, P., & Räth, N. 1995. Partitioning of nutrients in the system Cuscuta reflexa-Lupinus albus. Asp. Appl. Biol. 42: 71–79.Google Scholar
  30. Klaren, C.H. 1975. Physiological aspects of the hemiparasite Rhinanthus serotinus. PhD Thesis, University of Groningen, the Netherlands.Google Scholar
  31. Klaren, C.H. & Van de Dijk, S.J. 1976. Water relations of the hemiparasite Rhinanthus serotinus before and after attachment. Physiol. Plant. 38: 121–125.CrossRefGoogle Scholar
  32. Kuijt, J. 1969. The biology of parasitic flowering plants. University of California Press, Berkeley.Google Scholar
  33. Kuo, J., Pate, J.S., & Davidson, N.J. 1989. Ultrastructure of the haustorial interface and apoplastic continuum between host and the root hemiparasite Olax phyllanthi (Labill.) R. Br. (Olacaceae). Protoplasma 150: 27–39.CrossRefGoogle Scholar
  34. Lendzemo, V.W., Kuyper, T.W., Kropff, M.J., Van Ast, A. 2005. Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res. 91: 51–61.CrossRefGoogle Scholar
  35. Lendzemo, V.W., Kuyper, T.W., Matusova, R., Bouwmeester, H.J., & Van Ast, A. 2007. Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal. Behav. 2: 58–62.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Logan, D.C. & Stewart, G.R. 1991. Role of ethylene in the germination of the hemiparasite Striga hermonthica. Plant Physiol. 97: 1435–1438.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Loveys, B.R., Tyerman, S.D., & Loveys, B.R. 2001a. Transfer of photosynthate and naturally occurring insecticidal compounds from host plants to the root hemiparasite Santalum acuminatum (Santalaceae). Aust. J. Bot. 49: 9–16.CrossRefGoogle Scholar
  38. Loveys, B.R., Loveys, B.R., & Tyerman, S.D. 2001b. Water relations and gas exchange of the root hemiparasite Santalum acuminatum (quandong). Aust. J. Bot. 49: 479–486.CrossRefGoogle Scholar
  39. Lynn, D.G., & Chang, M. 1990. Phenolic signals in cohabitation: Implications for plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 497–526.CrossRefGoogle Scholar
  40. Marshall, J.D. & Ehleringer, J.R. 1990. Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84: 244–248.Google Scholar
  41. Pate, J.S. 2001. Haustoria in action: case studies of nitrogen acquisition by woody xylem-tapping hemiparasites from their hosts. Protoplasma 215: 204–217.PubMedCrossRefGoogle Scholar
  42. Pate, J.S., True, K.C., & Rasins, E. 1991. Xylem transport and storage of amino acids by S.W. Australian mistletoe and their hosts. J. Exp. Bot. 42: 441–451.CrossRefGoogle Scholar
  43. Popp, M., Mensen, R., Richter, A., Buschmann, H., & Von Willert, D.J. 1995. Solutes and succulence in southern African mistletoes. Trees 9: 303–310.CrossRefGoogle Scholar
  44. Press, M.C. & Phoenix, G.K. 2005. Impacts of parasitic plants on natural communities. New Phytol. 166: 737–751.PubMedCrossRefGoogle Scholar
  45. Press, M.C., Nour, J.J, Bebawi, F.F., Stewart, G.R. 1989. Antitranspirant-induced heat stress in the parasitic plant Striga hermonthica—a novel method of control. J. Exp. Bot. 40: 585–591.CrossRefGoogle Scholar
  46. Quested, H.M., Press, M.C., Callaghan, T.V., & Cornelissen, H.J. 2002. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia 130: 88–95.Google Scholar
  47. Quested, H.M., Press, M.C., & Callaghan, T.V. 2003. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia 135: 606–614.PubMedGoogle Scholar
  48. Quested, H.M., Callaghan, T.V., Cornelissen, J.H.C., & Press, M.C. 2005. The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects. J. Ecol. 93: 87–98.CrossRefGoogle Scholar
  49. Richter, A. & Popp, M. 1992. The physiological importance of accumulation of cyclitols in Viscum album L. New Phytol. 121: 431–438.CrossRefGoogle Scholar
  50. Richter, A., Popp, M., Mensen, R., Stewart, G.R., & Von Willert, D.J. 1995. Heterotrophic carbon gain of the parasitic angiosperm Tapinanthus oleifolius. Aust. J. Plant Physiol. 22: 537–544.CrossRefGoogle Scholar
  51. Rispail, N., Dita, M.-A., Gonzalez-Verdejo, C., Perez-de-Luque, A., Castillejo, M.-A., Prats, E., Roman, B., Jorrin, J., & Rubiales, D. 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol. 173: 703–712.PubMedCrossRefGoogle Scholar
  52. Rothe, K., Diettrich, B., Rahfeld, B., & Luckner, M. 1999. Uptake of phloem-specific cardenolides by Cuscuta sp. growing on Digitalis lanata and Digitalis purpurea. Phytochemistry 51: 357–361.CrossRefGoogle Scholar
  53. Runyon, J.B., Mescher, M.C., De Moraes, C..M. 2006. Volatile chemical cues guide host location and host selection by parasitic plants. Science 313: 1964–1967.PubMedCrossRefGoogle Scholar
  54. Schulze, E.-D. & Ehleringer, J.R. 1984. The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162: 268–275.PubMedCrossRefGoogle Scholar
  55. Schulze, E.-D., Lange, O.L., Ziegler, H. Gebauer, G. 1991. Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88: 457–462.CrossRefGoogle Scholar
  56. Shah, N., Smirnoff, N., & Stewart, G.R. 1987. Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol. Plant. 69: 699–703.CrossRefGoogle Scholar
  57. Siame, B.P., Weerasuriya, Y., Wood, K., Ejeta, G., & Butler, L.G. 1993. Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J. Agric. Food Chem. 41: 1486–1491.CrossRefGoogle Scholar
  58. Smith, C.E., Dudley, M.W., & Lynn, D.G. 1990. Vegetative/parasitic transition: Control and plasticity in Striga development. Plant Physiol. 93: 208–215.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Stewart, G.R. & Press, M.C. 1990. The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 127–151.CrossRefGoogle Scholar
  60. Taylor, A., Martin, J., & Seel, W.E. 1996. Physiology of the parasitic association between maize and witchweed (Striga hermonthica): is ABA involved? J. Exp. Bot. 47: 1057–1065.CrossRefGoogle Scholar
  61. Tennakoon, K.U. & Pate, J.S. 1996a. Effects of parasitism by a mistletoe on the structure and functioning of branches of its host. Plant Cell Environ. 19: 517–528.CrossRefGoogle Scholar
  62. Tennakoon, K.U. & Pate, J.S. 1996b. Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecologia 105: 369–376.CrossRefGoogle Scholar
  63. Tuquet, C., Farineau, N., & Sallé, G. 1990. Biochemical composition and photosynthetic activity of chloroplasts from Striga hermonthica and Striga aspera, root parasites of field-grown cereals. Physiol. Plant. 78: 574–582.CrossRefGoogle Scholar
  64. Watling, J.R. & Press, M.C. 2001. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol. 3: 244–250.CrossRefGoogle Scholar
  65. Wolswinkel, P. 1978. Phloem unloading in stem parts by Cuscuta: the release of 14C and K+ to the free space at 0°C and 25°C. Physiol. Plant. 42: 167–172.CrossRefGoogle Scholar
  66. Wolswinkel, P., Ammerlaan, A., & Peters, H.F.C. 1984. Phloem unloading of amino acids at the site of Cuscuta europaea. Plant Physiol. 75: 13–20.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Yoder, J.I. 1999. Parasitic plant responses to host plant signals: a model for subterranean plant–plant interactions. Curr. Opin. Plant Biol. 2: 65–70.PubMedCrossRefGoogle Scholar
  68. Yoneyama K., Yoneyama K., Takeuchi Y., & Sekimoto, H. 2007a. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225: 1031–1038.CrossRefGoogle Scholar
  69. Yoneyama, K., Xie, X., Kusumoto, D., Sekimoto, H., Sugimoto, Y., Takeuchi, Y., Yoneyama, K. 2007b. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta (no further details available yet)Google Scholar
  70. Ziegler, H. 1975. Nature of transported substances. In: Encyclopedia of plant physiology, N.S. Vol. 1, M.H. Zimmermann & J.A. Milburn (eds). Springer-Verlag, Berlin, pp. 59–100.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations