Ecological Biochemistry: Allelopathy and Defense Against Herbivores

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


Plants contain a vast array of compounds referred to as secondary metabolites that play no role in primary catabolic or biosynthetic pathways. Many of these metabolites influence important ecological interactions (e.g., deterring herbivores, protection against pathogens, allelopathy, symbiotic associations, seed germination of parasites, or interactions with pollinators).


Rubber Tree Predatory Mite Parasitic Wasp Phenolic Glycoside Cyanogenic Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin, J.H., & Tumlinson, J.H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276: 945–949.Google Scholar
  2. Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R., & walbot, V. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10: 1135–1149.PubMedCentralPubMedGoogle Scholar
  3. Ayres, M.P., Clausen, T.P., Redman, A.M., & Reichardt, P.B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78: 1696–1712.Google Scholar
  4. Bais, H.P., Park, S.-W., Weir, T.L., Callaway, R.M., & Vivanco, J.M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26–32.PubMedGoogle Scholar
  5. Baldwin, I.T. 1999. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. J. Chem. Ecol. 25: 3–30.Google Scholar
  6. Baldwin, I.T., Halitschke, R., Paschold, A., Vn Dahl, C.C., & Preston, C.A. 2006. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311, 812–815.PubMedGoogle Scholar
  7. Bartholomew, B. 1970. Bare zone between California shrub and grassland communities: the role of animals. Science 170: 1210–1212.PubMedGoogle Scholar
  8. Bennett, R.N. & Wallsgrove, R.M. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127: 617–633.Google Scholar
  9. Bergelson, J. & Purrington, C.B. 1996. Surveying patterns in the cost of resistance in plants. Am. Nat. 148: 536–558.Google Scholar
  10. Birkett, M.A., Chamberlain, K., Hooper, A.M., & Pickett, J.A. 2001 Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants? Plant Soil 232: 31–39.Google Scholar
  11. Bouwmeester, H.J., Verstappen, F.W.A., Posthumus, M.A., & Dicke, M. 1999. Spider mite-induced (SS)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121: 173–180.PubMedCentralPubMedGoogle Scholar
  12. Bryant, J.P., Chapin III, F.S., & Klein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.Google Scholar
  13. Bryant, J.P., Tahvanainen, J., Sulkinoja, M., Julkunen-Titto, R., Reichardt, P., & Green, T. 1989. Biogeographic evidence for the evolution of chemical defense by boreal birch and willow against mammalian browsing. Am. Nat. 134: 20–34.Google Scholar
  14. Bryant, J.P., Heitkonig, I., Kuropat, P., & Owen-Smith, N. 1991. Effects of severe defoliation on the long-term resistance to insect attack and on leaf chemistry in six woody species of the southern African savanna. Am. Nat. 137: 50–63.Google Scholar
  15. Bryant, J.P., Reichardt, P.B., Clausen, T.P., Provenza, F.D., & Kuropat, P.J. 1992. Woody plant-mammal interactions. In: Herbivores: their interactions with secondary plant metabolites. Vol II, Ecological and evolutionary processes, 2nd edition, G.A. Rosenthal (ed). Academic Press, San Diego, pp. 343–370.Google Scholar
  16. Carlini, C.R. & Grossi-de-Sá, M.F. 2002. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40: 1515–1539.PubMedGoogle Scholar
  17. Cates, R.G. & Orians, G.H. 1975. Successional status and the palatability of plants to generalized herbivores. Ecology 56: 410–418.Google Scholar
  18. Chitwood, D.J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40: 221–249.PubMedGoogle Scholar
  19. Chou, C.-H. & Kuo, Y.-L. 1986. Allelopathic research of subtropical vegetation in Taiwan. III. Allelopathic exclusion of understory by Leucaena leucophylla (Lam.) de Wit. J. Chem. Ecology 12: 1431–1448.Google Scholar
  20. Chrispeels, M.J. & Raikhel, N.V. 1991. Lectins, lectin genes, and their role in plant defense. Plant Cell 3: 1–9.PubMedCentralPubMedGoogle Scholar
  21. Clausen, T.P., Reichardt, P.B., Bryant, J.P., Werner, R.A., Post, K., & Frisby, K. 1989. A chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J. Chem. Ecol. 15: 2335–2346.PubMedGoogle Scholar
  22. Coley, P.D. 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70: 238–241.Google Scholar
  23. Coley, P.D., Bryant, J.P., & Chapin III, F.S. 1985. Resource availability and plant anti-herbivore defense. Science 230: 895–899.PubMedGoogle Scholar
  24. Coleman, J.O.D., Blake-Kalff, M.M.A., & Davies, T.G.E. 1997. Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation. Trends Plant Sci. 2: 144–151.Google Scholar
  25. Constabel, C.P., Yip, L., Patton, J.J., & Christopher, M.E. 2000. Polyphenol oxidas from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol. 124: 285–295.PubMedCentralPubMedGoogle Scholar
  26. Cunningham, S.D. & Berti, W.R. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29P: 207–212.Google Scholar
  27. De Jong, T. 1995. Why fast-growing plants do not bother about defence. Oikos 74: 545–548.Google Scholar
  28. Dell, B. & McComb, A.J. 1974. Resin production and glandular hairs in Beyeria viscosa (Labill.) Miq. (Euphorbiaceae). Aust. J. Bot. 25: 195–210.Google Scholar
  29. De Luca, V. & St Pierre, B. 2000. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci. 5: 168–173.PubMedGoogle Scholar
  30. Dicke, M. & Dijkman, H. 2001. Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochem. Syst. Ecol. 29: 1075–1087.Google Scholar
  31. Dicke, M., Agrawal, A.A. & Bruin, J. 2003. Plant talk, but are they deaf? Trends Plant Sci. 8: 403–405.PubMedGoogle Scholar
  32. Ding, J., Sun, Y., Xiao, C.L., Shi, K., Zhou, Y.H., & Yu, J.Q. 2007. Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J. Exp. Bot. 58: 3765–3773.PubMedGoogle Scholar
  33. Dirzo, R. & Raven. P.H. 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Res. 28: 137–167.Google Scholar
  34. Dolch, R. & Tscharntke, T. 2000. Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125: 504–511.Google Scholar
  35. Eckstein-Ludwig, U., Webb, R.J., Van Goethem, I.D.A., East, J.M., Lee, A.G., Kimura, M., O’Neill, P.M., Bray, P.G., Ward, S.A., & Krishna, S. 2003. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424: 957–961.PubMedGoogle Scholar
  36. Ehrlich, P.R. & Raven, P.H. 1964. Butterflies and plants: A study in coevolution. Evolution 18: 586–608.Google Scholar
  37. Ernst, W.H.O. 1990. Ecological aspects of sulfur metabolism. In: Sulfur nutrition and sulfur assimilation in higher plants, H. Rennenberg, C. Brunold, L.J. De Kok, & I. Stulen (eds). SPB Academic Publishing, The Hague, pp. 131–144.Google Scholar
  38. Etzler, M.E. 1985. Plant lectins: Molecular and biological aspects. Annu. Rev. Plant Physiol. 36: 209–234.Google Scholar
  39. Feng, Z. & Hartel, P.G. 1996. Factors affecting production of COS and CS2 in Leucaena and Mimosa species. Plant Soil 178: 215–222.Google Scholar
  40. Ferry, N., Martin, G., Edwards, M.G., Gatehouse, J.A., & Gatehouse, A.M.R. 2004. Plant–insect interactions: molecular approaches to insect resistance. Curr. Opin. Biotechnol. 15: 1–7.Google Scholar
  41. Flores, H.E., Vivanco, J.M., Loyola-Vargas, V.M. 1999. “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci. 4: 220–226.PubMedGoogle Scholar
  42. Franceschi, V.R., Krekling, T., Berryman, A.A., & Christiansen, E. 1998. Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions. Am. J. Bot. 85: 601–615.PubMedGoogle Scholar
  43. Gatehouse, J.A. 2002 Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156: 145–169.Google Scholar
  44. Gershenzon, J. 1984. Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress, B.N. Timmermann, C. Steelink, & F.A. Leowus (eds). Plenum Press, New York, pp. 273–320.Google Scholar
  45. Giri, A.P., Harsulkar, A.M., Deshpande, V.V., Sainani, M.N., Gupta, V.S., & Ranjekar, P.K. 1998. Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol. 116: 393–401.PubMedCentralGoogle Scholar
  46. Gleadow, R.M., Foley, W.J., & Woodrow, I.E. 1998. Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant Cell Environ. 21: 12–22.Google Scholar
  47. Guerrieri, E., Poppy, G.M., Powell, W., Rao, R., & Pennacchio, F. 2002 Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J. Chem. Ecol. 28: 1703–1715.PubMedGoogle Scholar
  48. Halkier, B.A. & Gershenzon, J. 2006 Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57: 303–333.PubMedGoogle Scholar
  49. Hamilton, J.G., Zangerl, A.R., DeLucia, E.H., & Berenbaum, M.R. 2001. The carbon-nutrient balance hytothesis: its rise and fall. Ecol. Lett. 4: 86–95.Google Scholar
  50. Harborne, J.B. 1988. Introduction to ecological biochemistry. Academic Press, New York.Google Scholar
  51. Hartley, M.R., Chaddock, J.A., & Bonness, M.S. 1996. The structure and function of ribosome-inactivating proteins. Trends Plant Sci. 1: 254–260.Google Scholar
  52. Hartmann, T. 1999. Chemical ecology of pyrrolizidine alkaloids. Planta 207: 483–495.Google Scholar
  53. Hashimoto, T. & Yamada, Y. 1994. Alkaloid biogenesis: molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 257–285.Google Scholar
  54. Haukioja, E. 1980. On the role of plant defenses in the fluctuations of herbivore populations. Oikos 35: 202–213.Google Scholar
  55. Haukioja, E. & Neuvonen, S. 1985. Induced long-term resistance of birch foliage against defoliators: Defensive or incidental. Ecology 66: 1303–1308.Google Scholar
  56. Heil, M. & Baldwin, I.T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61–67.PubMedGoogle Scholar
  57. Heil, M., Fiala, B., Maschwitz, U., & Linsenmaier, K.U. 2001. On benefits of indirect defence: short- and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126: 395–403.Google Scholar
  58. Heinstein, P.F. & Chang, C.-J. 1994. Taxol. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 663–674.Google Scholar
  59. Herms, D.A. & Mattson, W.J. 1992. The dilemma of plants: to grow or defend. Quart. Rev. Biol. 67: 283–325.Google Scholar
  60. Hilder, V.A., Powell, K.S., Gatehouse, A.M.R., Gatehouse, J.A., Gatehouse, L.N., Shi, Y., Hamilton, W.D.O., Merryweather, A., Newell, C.A., Timans, J.C., Peumans, W.J., Van Damme, E., & Boulter, D. 1995. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res. 4: 18–25.Google Scholar
  61. Howe, H.F. & Westley, L.C. 1988. Ecological relationships of plants and animals. Oxford University Press, New York.Google Scholar
  62. Ishimoto, M. & Chrispeels, M.J. 1996. Protective mechanism of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean. Plant Physiol. 111: 393–401.PubMedCentralPubMedGoogle Scholar
  63. Jhee, E.M., Boyd, R.S., & Eubanks, M.D. 2005. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol. 168: 331–344.PubMedGoogle Scholar
  64. Jose, S. & Gillespie, A.R. 1998a. Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestern USA. Plant Soil 203: 191–197.Google Scholar
  65. Jose, S. & Gillespie, A.R. 1998b. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth physiology. Plant Soil 203: 199–205.Google Scholar
  66. Kahl, J., Siemens, D.H., Aerts, R.J., Gaebler, R., Kuehnemann, F., Preston, C.A. & Baldwin, I.T. 2000. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210: 336–342.PubMedGoogle Scholar
  67. Kakes, P. 1990 Properties and functions of the cyanogenic system in higher plants. Euphytica 48: 25–43.Google Scholar
  68. Karban, R. & Agrawal, A.A. 2002. Herbivore offense. Annu. Rev. Ecol. Syst. 33: 641–664.Google Scholar
  69. Karban, R., Baldwin, I.T., Baxter, K.J., Laue, G., & Felton, G.W. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125: 66–71.Google Scholar
  70. Karban, R., Maron, J., Felton, G.W., Ervin, G., & Eichenseer, H. 2003 Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100: 325–332.Google Scholar
  71. Katsvairo, T.W., Rich, J.R., & Dunn, R.A. 2006. Perennial grass rotation: an effective and challenging tactic for nematode management with many other positive effects. Pest Manage. Sci. 62: 793–796.Google Scholar
  72. Keller, H., Blein, J.-P., Bonnet, P., & Ricci, P. 1996. Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiol. 110: 365–376.PubMedCentralPubMedGoogle Scholar
  73. Kessler, A. 2006. Plant–insect interactions in the era of consolidation in biological sciences. Nicotiana attenuata as an ecological expression system. In: Chemical ecology: from gene to ecosystem, M. Dicke & W. Takken (eds.), Springer, Dordrecht, pp. 19–37.Google Scholar
  74. Kimmerer, T.W. & Potter, D.A. 1987. Nutritional quality of specific leaf tissues and selective feeding by a specialist leafminer. Oecologia 71: 548–551.Google Scholar
  75. Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509–540.PubMedGoogle Scholar
  76. Koiwa, H., Bressan, R.A., & Hasegawa, P.M. 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379–384.Google Scholar
  77. Korth, K.L. & Dixon, R.A. 1997. Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol. 115: 1299–1305.PubMedCentralPubMedGoogle Scholar
  78. Lambers, H. & Poorter, H. 2004. Inherent variation in growth rate between higher plant: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 34: 283–362.Google Scholar
  79. Lata, J.-C., Degrange, V., Raynaud, X., Maron, P.-A., Lensi, R., & Abbadie, L. 2004. Grass populations control nitrification in savanna soils. Funct. Ecol. 18: 605–611.Google Scholar
  80. Lerdau, M., Litvak, M., Palmer, P., & Monson, R. 1997. Controls over monoterpene emissions from boreal forest conifers. Tree Physiol. 17: 563–569.PubMedGoogle Scholar
  81. Leung, T.-W. C., Williams, D.H., Barna, J.C.J., Foti, S., & Oelrichs, P.B. 1986. Structural studies on the peptide moroidin from Laporta moroides. Tetrahedron 42: 3333–3348.Google Scholar
  82. Lieberei, R., Biehl, B., Giesemann, A., & Junqueira, N.T.V. 1989. Cyanogenesis inhibits active defense reactions in plants. Plant Physiol. 90: 33–36.PubMedCentralPubMedGoogle Scholar
  83. Loomis, W.E. 1932. Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc. Am. Soc. Hortic. Sci. 29: 240–245.Google Scholar
  84. Lord, J.M. & Roberts, L.M. 1996. The intracellular transport of ricin: Why mammalian cells are killed and how Ricinus cells survive. Plant Physiol. Biochem. 34: 253–261.Google Scholar
  85. Lorio, P.L., Jr. 1986. Growth-differentiation balance: A basis for understanding southern pine beetle-tree interactions. For. Ecol. Manage. 14: 259–273.Google Scholar
  86. Macías, F.A., Oliveros-Bastidas, A., Marín, D., Castellano, D., Simonet, A.M., & Molinillo, J.M.G. 2005. Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-β-D-glucopyranosyl-4-hydroxy-(2H)- 1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem. 53: 554–561.PubMedGoogle Scholar
  87. Mattiacci, L., Dicke, M., & Posthumus, M.A. 1995. β-galactosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92: 2036–2040.PubMedCentralPubMedGoogle Scholar
  88. McKey, D., Waterman, P.G., Mbi, C.N., Gartlan, J.S., & Struhsaker, T.T. 1978. Phenolic content of vegetation in two African rain forests: Ecological implications. Science 202: 61–63.Google Scholar
  89. McMahon, J.M., White, W.L.B., & Sayre, R.T. 1995. Cyanogenesis in cassava (Manihot esculenta Crantz. J. Exp. Bot. 46: 731–741.Google Scholar
  90. Muller, C.H., Muller, W.H., & Haines, B.L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143: 471–473.PubMedGoogle Scholar
  91. Nimbal, C.I., Yerkes, C.N., Weston, L.A., & Weller, S.C. 1996. Herbicidal activity acitivity and site of action of the natural product sorgoleone. Pesticide Biochem. Physiol. 54: 73–83.Google Scholar
  92. Northup, R.R., Yu, Z., Dahlgren, R.A., & Vogt, K.A. 1995. Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229.Google Scholar
  93. Paavolainen, L., Kitunen, V., & Smolander, A. 1998. Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205: 147–154.Google Scholar
  94. Paschold, A., Halitschke, R., & Baldwin, I.T. 2006. Using “mute” plants to translate volatile signals. Plant J. 45: 275–291.PubMedGoogle Scholar
  95. Pellmyr, O. 1997. Stability of plant-animal mutualism: Keeping the benefactors at bay. Trends Plant Sci. 2: 408–409.Google Scholar
  96. Penuelas, J., Ribas-Carbó, M., & Giles, L. 1996. Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J. Chem. Ecol. 22: 801–805.PubMedGoogle Scholar
  97. Petersen, B.L., Andréasson, E., Bak, S., Agerbirk, N., & Halkier, B.A. 2001. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta 212: 612–618.PubMedGoogle Scholar
  98. Peumans, W.J. & Van Damme, E.J.M. 1995. Lectins as plant defense proteins. Plant Physiol. 109: 347–352.PubMedCentralPubMedGoogle Scholar
  99. Piluk J., Hartel, P.G., & Haines, B.L. 1998. Production of carbon disulfide (CS2) from L-djenkolic acid in the roots Mimosa pudica L. Plant Soil 200: 27–32.Google Scholar
  100. Pollard, A.J. & Briggs, D. 1984. Genecological studies of Urtica dioica L. III Stinging hairs and plant-herbivore interactions. New Phytol. 97: 507–522Google Scholar
  101. Poorter, H. & Bergkotte, M. 1992. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15: 221–229.Google Scholar
  102. Pueyo, J.J. & Delgado-Salinas, A. 1997. Presence of α-amylase inhibitor in some members of the subtribe Phaselinae (Phaseoleae: Fabaceae). Am. J. Bot. 84: 79–84.Google Scholar
  103. Raikhel, N.V., Lee, H.-I., & Broekaert, W.G. 1993. Structure and function of chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 591–615.Google Scholar
  104. Rask, L,, Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. & Meijer, J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93–114.PubMedGoogle Scholar
  105. Rasmann, S., Köllner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., & Turlings, T.C.J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434: 732–737.PubMedGoogle Scholar
  106. Rasmussen, J.A., Hejl, A.M., Einhellig, F.A., & Thomas, J.A. 1992. Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol. 18: 197–207.PubMedGoogle Scholar
  107. Ravanel, P., Tissut, M., & Douce, R. 1986. Platanetin: a potent natural uncoupler and inhibitor of the exogenous NADH dehydrogenase in intact plant mitochondria. Plant Physiol. 80: 500–504.PubMedCentralPubMedGoogle Scholar
  108. Renwick, J.A.A. & Lopez, K. 1999. Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates? Entomol. Exp. Applic. 91: 51–58.Google Scholar
  109. Rhoades, D.F. 1985. Offensive-defensive interactions between herbivores and plants: Their relevance in herbivore population dynamics and ecological theory. Am. Nat. 125: 205–238.Google Scholar
  110. Rice-Evans, C.A., Miller, N.J., & Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159.Google Scholar
  111. Ridenour, W.M. & Callaway, R.M. 2001. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126: 444–450.Google Scholar
  112. Roberts, T.H., Rasmusson, A.G., & Møller, I.M. 1996. Platanetin and 7-iodo-acridone-4-carboxylic acid are not specific inhibitors of respiratory NAD(P)H dehydrogenases in potato tuber mitochondria. Physiol. Plant. 96: 263–267.Google Scholar
  113. Romero, G.Q. & Benson, W.W. 2004. Leaf domatia mediate mutualism between mites and a tropical tree. Oecologia 140: 609–616.PubMedGoogle Scholar
  114. Röse, U.S.R., Manukian, A., Heath, R.R., & Tumlinson, J.H. 1996. Volatile semiochemicals released from undamaged cotton leaves. A systemic response of living plants to caterpillar damage. Plant Physiol. 111: 487–495.PubMedCentralPubMedGoogle Scholar
  115. Sagers, C.L., Ginger, S.M., & Evans, R.D. 2000. Carbon and nitrogen isotopes trace nutrient exchange in an ant-plant mutualism Oecologia 123: 582–586.Google Scholar
  116. Schroeder, H.E., Gollasch, S., Moore, A., Tabe, L.M., Craig, S., Hardie, D.C., Chrispeels, M.J., Spences, D., & Higgins, T.J.V. 1995. Bean β-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol. 107: 1233–1239.PubMedCentralPubMedGoogle Scholar
  117. Schuler, M.A. 1996. The role of cytochrome P450 monooxygenase in plant-insect interactions. Plant Physiol. 112: 1411–1419.PubMedCentralPubMedGoogle Scholar
  118. Sehmer, L., Fontaine, V., Antoni, F., & Dizengremel, P. 1998. Effects of ozone and elevated atmospheric carbon dioxide on carbohydrate metabolism of sprice needles. Catabolic and detoxification pathways. Physiol. Plant. 102: 605–611.Google Scholar
  119. Selmar, D. 1993. Transport of cyanogenic glucosides: linustatin uptake by Hevea cotyledons. Planta 191: 191–199.Google Scholar
  120. Selmar, D., Liebererei, R., & Biehl, B. 1988. Mobilization and utilization of cyanogenic glycosides. Plant Physiol. 86: 711–716.PubMedCentralPubMedGoogle Scholar
  121. Selmar, D., Grocholewski, S., & Seigler, D.S. 1990. Cyanogenic lipids. Utilization during seedling development of Ungnadia speciosa. Plant Physiol. 93: 631–636.PubMedCentralPubMedGoogle Scholar
  122. Stock, W.D., Le Roux, D., & Van der Heyden, F. 1993. Regrowth and tannin production in woody and succulent karoo shrubs in response to simulated browsing. Oecologia 96: 562–568.Google Scholar
  123. Subbarao, G.V., Ishikawa, T., Ito, O., Nakahara, K., Wang, H.Y., & Berry, W.L. 2006. A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288: 101–112.Google Scholar
  124. Subbarao, G., Rondon, M., Ito, O., Ishikawa, T., Rao, I., Nakahara, K., Lascano, C., & Berry, W. 2007a. Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant Soil 294: 5–18.Google Scholar
  125. Subbarao, G.V, Ban, T., Kishii, M., Ito, O., Samejima, H, Pearse, S.J., Hossain, A.K.M.Z., Gopalakrishnan, S., Wang, H.Y., Nakahara, K., Tsujimoto, H., & Berry, W.L. 2007b. Biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) can combat nitrification in wheat farming. Plant Soil 229: 55–64.Google Scholar
  126. Sudhakar, D., Fu, X., Stoger, E., Williams, S., Spence, J., Brown, D.P., Bharathi, M., Gatehouse, J.A., & Christou, P. 1998. Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Res. 7: 371–378.PubMedGoogle Scholar
  127. Tahvanainen, J., Julkumen-Tiitto, R., & Kettunen, J. 1985. Phenolic glycosides govern the food selection pattern of willow feeding beetles. Oecologia 67: 52–56.Google Scholar
  128. Takabayashi, J. & Dicke, M. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1: 109–113.Google Scholar
  129. Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Hoj, P.B., & Møller, B.L. 2001 Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293: 1826–1828.PubMedGoogle Scholar
  130. Ton, J., D’Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., & Turlings, T.C.J. 2007. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49: 16–26.PubMedGoogle Scholar
  131. Tscharntke, T., Thiessen, S., Dolch, R., & Boland, W. 2001.Herbivory,induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem. Syst. Ecol. 29: 1025–1047.Google Scholar
  132. Turlings, T.C.J. & Ton, J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9: 421–427.PubMedGoogle Scholar
  133. Turlings, T.C.J. & Wäckers, F.L. 2004. Recruitment of predators and parasitoids by herbivore-damaged plants. In: Advances in insect chemical ecology, R.T. Cardé & J. Millar (eds). Cambridge University Press, Cambridge, pp. 21–75.Google Scholar
  134. Twigg, L.E. & King, D.R. 1991. The impact of fluoroacetate-bearing vegetation on native Australian fauna: a review. Oikos 61: 412–430.Google Scholar
  135. Twigg, L.E., Wright, G.R., & Potts, M.D. 1999. Fluoroacetate content of Gastrolobium brevipes in central Australia. Aust. J. Bot. 47: 877–880.Google Scholar
  136. Twigg, L.E., Martin, G.R., & Lowe, T.J. 2002. Evidence of pesticide resistance in medium-sized mammalian pests: a case study with 1080 poison and Australian rabbits. J. Appl. Ecol. 39: 549–560.Google Scholar
  137. Tuomi, J., Niemela, P., Haukioja, E. & Neuvonen, S. 1984. Nutrient stress: an explanation for plant anti-herbivore responses to defoliation. Oecologia 61: 208–210.Google Scholar
  138. Understrup, A.G., Ravnskov, S., Hansen, H.C.B., & Fomsgaard, I.S. 2005. Biotransformation of 2-benzoxazolinone to 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-phenoxazin-3-one in soil. J. Chem. Ecol. 31:1205–1222.PubMedGoogle Scholar
  139. Van Loon, J.J.A, Blaakmeer, A., Griepink, F.C., van Beek, T.A., Schoonhoven, L.M. & De Groot, A. 1992. Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae). Chemoecology 3: 39–44.Google Scholar
  140. Van Tol, R.W.H.M., Van der Sommen, A.T.C., Boff, M.I.C., Van Bezooijen, J., Sabelis, M.W., & Smits, P.H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4: 292–294.Google Scholar
  141. Voelckel, C. & Baldwin, I.T. 2004. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J. 38: 650–663.PubMedGoogle Scholar
  142. Vrieling, K. & Wijk C. A. M. 1994. Cost assessment of the production of pyrrolizidine alkaloids in ragwort (Senecio jacobaea L.). Oecologia 97: 541–546.Google Scholar
  143. Waring, R.H. & Pitman, G.B. 1985. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66: 889–897.Google Scholar
  144. Waring, R.H., McDonald, A.J.S., Larsson, S., Ericsson, T., Wiren, A., Arwidsson, E., Ericsson, A., & Lohammar, T. 1985. Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66: 157–160.Google Scholar
  145. Wasternack, C. & Parthier, B. 1997. Jasmonate-signalled plant gene expression. Trends Plant Sci. 2: 302–307.Google Scholar
  146. Weck-Reichhart, D., Hehn, A., & Didierjean, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5: 116–123.Google Scholar
  147. Weir, T., Bais, H., Stull, V., Callaway, R., Thelen, G., Ridenour, W., Bhamidi, S., Stermitz, F., & Vivanco, J. 2006. Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223: 785–795.PubMedGoogle Scholar
  148. Willmer, P.G. & Stone, G.N. 1997. How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388: 165–167.Google Scholar
  149. Wright, I.J. & Cannon, K. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15: 351–359.Google Scholar
  150. Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. 2000a. Allelochemicals in wheat (Triticum aestivum L.): Variation of Phenolic acids in root tissues. J. Agric. Food Chem. 48: 5321–5325.Google Scholar
  151. Wu, H., Pratley, J., Lemerle, D. & Haig, T. 2000b. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust. J. Agric. Res. 51: 937–944.Google Scholar
  152. Wu, A., Sun, X., Pang, Y., & Tang, K. 2002. Homozygous transgenic rice lines expressing GNA with enhanced resistance to the rice sap-sucking pest Laodelphax striatellus. Plant Breeding 121: 93–95.Google Scholar
  153. Wu, H., Pratley, J., Lemerle, D., An, M., & Liu, D. 2007. Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant Soil 296: 85–93.Google Scholar
  154. Yenesew, A., Mushibe, E.K., Induli, M., Derese, S., Midiwo, J.O., Kabaru, J.M., Heydenreich, M., Koch, A., & Peter, M.G. 2005 7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoliata. Phytochemistry 66: 653–657.PubMedGoogle Scholar
  155. Yu, J.Q., Shou, S.Y., Qian, Y.R., Zhu, Z.J., & Hu, W.H. 2000. Autotoxic potential of cucurbit crops. Plant Soil 223: 147–151.Google Scholar
  156. Ziska, L.H., Sicher Jr, R.C., George, K., & Mohan, J.E. 2007. Rising carbon dioxide, plant biology public health: potential impacts on the growth and toxicity of poison ivy (Toxicodendron radicans). Weed Sci. 55: 288–292.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations