Symbiotic Associations

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


Symbiosis is the “living together” of two or more organisms. In its broadest sense, symbiotic associations include parasitic and commensal as well as mutually beneficial partnerships. As is common in the ecophysiological literature, however, we use the term symbiosis in a narrow sense to refer to mutually beneficial associations between higher plants and microorganisms.


Root Hair Mycorrhizal Fungus Arbuscular Mycorrhiza Mycorrhizal Plant Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiyama, K. & Hayashi, H. 2006. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot. 97: 925–931.PubMedCentralPubMedGoogle Scholar
  2. Akiyama, K., Matsuzaki, K., & Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.PubMedGoogle Scholar
  3. Akkermans, A.D.L. & Hirsch, A.M. 1997. A reconsideration of terminology in Frankia research: A need for congruence. Physiol. Plant. 99: 574–578.Google Scholar
  4. Allen, E.B. & Allen, M.F. 1984. Competition between plants of different successional stages: mycorrhizae as regulators. Can J. Bot. 62: 2625– 2629.Google Scholar
  5. Allen, M.F., Allen, E.B., & Friese, C.G. 1989. Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol. 111: 45–49.Google Scholar
  6. Augé, R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42.Google Scholar
  7. Arredondo-Peter, R., Hargrove, M.S., Moran, J.F., Sarath, G., & Klucas, R.V. 1998. Plant hemoglobins. Plant Physiol. 118: 1121–1125.PubMedCentralPubMedGoogle Scholar
  8. Baas, R., & Lambers, H. 1988. Effects of vesicular–arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to the internal phosphate concentration. Physiol. Plant. 74: 701–707.Google Scholar
  9. Baas, R., Van der Werf, A., & Lambers, H. 1989. Root respiration and growth in Plantago major as affected by vesicular-arbuscular mycorrhizal infection. Plant Physiol. 91: 227–232.PubMedCentralPubMedGoogle Scholar
  10. Bacon, C.W. & De Battista, J. 1991. Endophytic fungi of grasses. In: Handbook of applied mycology. Vol. 1: Soil and plants, D.K. Arora, B. Rai, K.G. Mukerji, & G.R. Knudsen (eds). Marcel Dekker, New York, pp 231–256.Google Scholar
  11. Bago, B., Pfeffer, P.E., & Shachar-Hill, Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124: 949–958.PubMedCentralPubMedGoogle Scholar
  12. Barker, S.J., Tagu, D., & Delp, G. 1998. Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plant Physiol. 116: 1201–1207.Google Scholar
  13. Batty, A.L., Dixon, K.W., Brundrett, M.C., & Sivasithamparam, K. 2004. Orchid conservation and mycorrhizal associations. In: Microorganisms in plant conservation and biodiversity, K. Sivasithamparam, K.W. Dixon, & R.L. Barrett (eds). (Kluwer Academic Publishers, Dordrecht, pp. 195–226.Google Scholar
  14. Bearden, B. & Petersen, L. 2000. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218: 173–183.Google Scholar
  15. Bécard, G., Taylor, L.P., Douds, D.D., Pfeffer, P.E., & Donner, L. 1995. Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol. Plant-Microbe Interact. 8: 252–258.Google Scholar
  16. Bécard, G., Kosuta, S., Tamasloukht M., Sejalon-Delmas, N., & Roux, C. 2004. Partner communication in the arbuscular mycorrhizal interaction. Can. J. Bot. 82: 1186–1197.Google Scholar
  17. Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J.-C., Roux, C., Bécard, G., & Séjalon-Delmas, N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4: 1239–1247.Google Scholar
  18. Bethlenfalvay, G.J., Pacovsky, R.S., Bayne, H.G., & Stafford, A.E. 1982. Interactions between nitrogen fixation, mycorrhizal colonization, and host-plant growth in the Phaseolus-Rhizobium-Glomus symbiosis. Plant Physiol. 70: 446–450.PubMedCentralPubMedGoogle Scholar
  19. Bidartondo, M.I., Burghardt, B., Gebauer, G., Bruns, T.D., Read, D.J. 2004. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc. R Soc. B: Biol. Sci. 271: 1799–1806.Google Scholar
  20. Black, K. & Osborne, B. 2004. An assessment of photyosynthetic down-regulation in cyanobacteria from the Gunnera-Nostoc symbiosis. New Phytol. 162: 125–132.Google Scholar
  21. Boddey, R.M., Urquiaga, S., Alves, B.J.R., & Reis, V. 2003. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252: 139–149.Google Scholar
  22. Bolan, N.S., Robson, A.D., & Barrow, N.J. 1987. Effect of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99: 401–410.Google Scholar
  23. Boller, B.C. & Nösberger, J. 1987. Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrass at low levels of 15N-fertilization. Plant Soil 104: 219–226.Google Scholar
  24. Boulet, F. & Lambers, H. 2005. Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of shape Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269: 357–367.Google Scholar
  25. Bouwmeester, H.J., Roux, C., Lopez-Raez, J.A., & Becard, G. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12: 224–230.PubMedGoogle Scholar
  26. Brown, S.M., Oparka, K.J., Sprent, J.I., & Walsh, K.NB. 1995. Symplasmic transport in soybean root nodules. Soil Biol. Biochem. 27: 387–399.Google Scholar
  27. Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154: 275–304.Google Scholar
  28. Buee, M., Rossignol, M., Jauneau, A., Ranjeva, R., & Bécard, G.2000. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 13: 693–698.PubMedGoogle Scholar
  29. Cairney, J.W.G. 2000. Evolution of mycorrhiza systems. Naturwissensch. 87: 467–475.Google Scholar
  30. Cairney, J.W.G. & Ashford, A.E, 2002 Biology of mycorrhizal associations of epacrids (Ericaceae). New Phytol. 154: 305–326.Google Scholar
  31. Cairney, J.W.G. & Burke, R.M. 1998. Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205: 181–192.Google Scholar
  32. Cameron, D.D., Leake, J.R., & Read, D.J. 2006. Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol. 171: 405–416.PubMedGoogle Scholar
  33. Catford, J.G., Staehelin, C., Larose, G., Piché, Y., & Vierheilig, H. 2006. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285: 257–266.Google Scholar
  34. Cavagnaro, T.R., Smith, F.A., Hay, G., Carne-Cavagnaro, V.L., & Smith, S.E. 2004. Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato. New Phytol. 161: 485–494.Google Scholar
  35. Cavalcante, V.A. & Döbereiner, J. 1988. A new acid-tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108: 23–31.Google Scholar
  36. Chalot, M., Blaudez, D., & Brun, A. 2006. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci. 11: 263–266.PubMedGoogle Scholar
  37. Christiansen-Weniger, C., Groneman, A.F., & Van Veen, J.A. 1992. Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminium tolerance. Plant Soil 139: 167–174.Google Scholar
  38. Clay, K. 1988. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69: 10–16.Google Scholar
  39. Clay, K., Marks, S., & Cheplick, G.P. 1993. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74: 1767–1777.Google Scholar
  40. Cohen, E., Okon, Y., Kigel, J., Nur, I., & Henis, Y. 1980. Increase in dry weight and total nitrogen content in Zea mays and Setaria italica associated with nitrogen-fixing Azospirillum. Plant Physiol. 66: 746–749.PubMedCentralPubMedGoogle Scholar
  41. Collier, S.C., Yarnes, C.T., & Herman, R.P. 2003. Mycorrhizal dependency of Chihuahuan Desert plants is influenced by life history strategy and root morphology. J. Arid Environ. 55: 223–229.Google Scholar
  42. Coronado, C., Zuanazzi, J.A.S., Sallaud, C., Quirion, J.-C., Esnault, R., Husson, H.-P., Kondorosi, A., & Ratet, P. 1995. Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol. 108: 533–542.PubMedCentralPubMedGoogle Scholar
  43. Day, D.A. & Copeland, L. 1991. Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol. Biochem. 29: 185–201.Google Scholar
  44. Dewan, M.M. & Sivasithamparam, K. 1988. A plant-growth-promoting sterile fungus from wheat and rye-grass roots with potential for suppressing take-all. New Phytol. 91: 687–692.Google Scholar
  45. Diaz, C.L., Melchers, L.S., Hooykaas, P.J.J., Lugtenberg, B.J.J., & Kijne, J.W. 1989. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581.Google Scholar
  46. Dobbelaere, S., Croonenebosch, A., Thys, A., Vande Broek, A., Vanderleyden, J. 1999. Phytostimulatory effect of Azospirillum brasiliense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212: 155–164.Google Scholar
  47. Dong, Z., Canny, M.J., McCully, M.E., Roboredo, M.R., Cabadilla, C.F., Ortega, E., & Rodes, R. 1994. A nitrogen-fixing endophyte of sugarcane stems. A new role for the apoplast. Plant Physiol. 105: 1139–1147.PubMedCentralPubMedGoogle Scholar
  48. Douds, D.D., Johnson, C.R., & Koch, K.E. 1988. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol. 86: 491–496.PubMedCentralPubMedGoogle Scholar
  49. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V., & Gianinazzi, S. 1989. First report of non-mycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum) and fababean (Vicia faba L.). Plant Sci. 60: 215–222.Google Scholar
  50. Eissenstat, D.M. 1990. A comparison of phosphorus and nitrogen transfer between plants of different phosphorus status. Oecologia 82: 342–347.Google Scholar
  51. Eissenstat, D.M., Graham, J.H., Syvertsen, J.P., & Drouillard, D.L. 1993. Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann. Bot. 71: 1–10.Google Scholar
  52. Ezawa, T., Saito, M., & Yoshida, T. 1995. Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant Soil 176: 57–63.Google Scholar
  53. Ezawa, T., Smith, S.E., & Smith, F.A. 2002. P metabolism and transport in AM fungi. Plant Soil 244: 221–230.Google Scholar
  54. Ferrol, N., Pozo, M., Antelo, M., & Azcón-Aguilar, C. 2002. Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants. J. Exp. Bot. 53: 1683–1687.PubMedGoogle Scholar
  55. Fischer Walter, L.E., Hartnett, D.C., Hetrick, B.A.D., & Schwab, A.P. 1996. Interspecific nutrient transfer in a tallgrass prairie plant community. Am. J. Bot. 83: 180–184.Google Scholar
  56. Francis, R. & Read, D.J. 1994. The contribution of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159: 11–25.Google Scholar
  57. Fredeen, A.L. & Terry, N. 1988. Influence of vesicular-arbuscular mycorrhizal infection and soil phosphorus level on growth and carbon metabolism of soybean. Can. J. Bot. 66: 2311–2316.Google Scholar
  58. Gadkar, V., David-Schwartz, R., Kunik, T., and Kapulnik, Y. 2001. Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol. 127: 1493–1499.PubMedCentralPubMedGoogle Scholar
  59. Gault, R.R., Peoples, M.B., Turner, G.L., Lilley, D.M., Brockwell, J., & Bergersen, F.J. 1995. Nitrogen fixation by irrigated lucerne during the first three years after establishment. Aust. J. Agric. Res. 56: 1401–1425.Google Scholar
  60. Gebauer, G. & Meyer, M. 2003. 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol. 160: 2209–2223.Google Scholar
  61. Genre, A. & Bonfante, P. 2005. Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi. J. Plant Interact. 1: 3–13.Google Scholar
  62. Geurts, R. & Bisseling, T. 2002. Rhizobium Nod factor perception and signalling. Plant Cell 14: 239–249.Google Scholar
  63. Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.-C., Jaubert, M., Simon, D., Cartieaux, F., Prin, Y., Bena, G., Hannibal, L., Fardoux, J., Kojadinovic, M., Vuillet, L., Lajus, A., Cruveiller, S., Rouy, Z., Mangenot, S., Segurens, B., Dossat, C., Franck, W.L., Chang, W.-S., Saunders, E., Bruce, D., Richardson, P., Normand, P., Dreyfus, B., Pignol, D., Stacey, G., Emerich, D., Vermeglio, A., Medigue, C., & Sadowsky, M. 2007. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316: 1307–1312.Google Scholar
  64. Glassop, D., Smith, S.E., & Smith, F.W. 2005. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222: 688–698.PubMedGoogle Scholar
  65. Govindarajulu, M., Pfeffer, P., Jin, H., Abubaker, J., Douds, D., Allen, J.W., Bucking, H., Lammers, P., & Shachar Hill, Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819–823.PubMedGoogle Scholar
  66. Graham, J.H., Eissenstat, D.M., & Drouillard, D.L. 1991. On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct. Ecol. 5: 773–779.Google Scholar
  67. Grimoldi, A.A., Kavanová, M., Lattanzi, F.A., & Schnyder, H. 2005. Phosphorus nutrition-mediated effects of arbuscular mycorrhiza on leaf morphology and carbon allocation in perennial ryegrass. New Phytol. 168: 435–444.PubMedGoogle Scholar
  68. Grimoldi, A.A., Kavanová, M., Lattanzi, F.A., Schaufele, R., & Schnyder, H. 2006. Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. New Phytol. 172: 544–553.PubMedGoogle Scholar
  69. Gualtieri, G. & Bisseling, T, 2000. The evolution of nodulation. Plant Mol. Biol. 42: 181–194.PubMedGoogle Scholar
  70. Handley, L.L. & Raven, J.A. 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 15: 965–985.Google Scholar
  71. Handley, L.L., Daft, M.J., Wilson, J., Scrimgeour, C.M., Ingelby, K., & Sattar, M.A. 1993. Effects of the ectoand VA-mycorrhizal fungi Hydnagium carneum and Glomus clarum on the δ15N and δ13C values of Eucalyptus globulus and Ricinus communis. Plant Cell Environ. 16: 375–382.Google Scholar
  72. Harrison, M.J. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 361–389.PubMedGoogle Scholar
  73. Harrison, M.J. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59: 19–42.PubMedGoogle Scholar
  74. Harrison, M., & Dixon, R. 1994. Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J. 6: 9–20.Google Scholar
  75. Hartnett, D.C. & Wilson, G.W.T. 2002. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244: 319–331.Google Scholar
  76. Hause, B. & Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184–196.PubMedGoogle Scholar
  77. He, X., Critchley, C., Ng, H., & Bledsoe, C. 2004. Reciprocal N (15NH4 + or 15NO3 ) transfer between nonN2–fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163: 692–640.Google Scholar
  78. He, X., Critchley, C., Ng, H., & Bledsoe, C. 2005. Nodulated N2–fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4 + or 15NO3 supplied as ammonium nitrate. New Phytol. 167: 897–912.PubMedGoogle Scholar
  79. Hobbie, E.A. 2006. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 563–569.PubMedGoogle Scholar
  80. Högberg, P. 1990. 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 115: 483–486.Google Scholar
  81. Hungate, B.A., Stiling, P.D., Dijkstra, P., Johnson, D.W., Ketterer, M.E., Hymus, G.J., Hinkle, C.R., & Drake, B.G. 2004. CO2 elicits long-term decline in nitrogen fixation. Science 304: 1291.PubMedGoogle Scholar
  82. Hunt, S., & Layzell, D.B. 1993. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 483–511.Google Scholar
  83. Hutton, B.J., Dixon, K.W., & Sivasithamparam, K. 1994. Ericoid endophytes of Western Australian heaths (Epacridaceae). New Phytol. 127: 557–655.Google Scholar
  84. Hutton, B.J., Sivasithamparam, K., Dixon, K.W., & Pate, J.S. 1996. Pectic zymograms and water stress tolerance of endophytic fungi isolated from Western Australian heaths (Epacridaceae). Ann. Bot. 77: 399–404.Google Scholar
  85. Israel. D.W. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 84: 835–840.PubMedCentralPubMedGoogle Scholar
  86. Jakobsen, I. & Rosendahl, L. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115: 77–83.Google Scholar
  87. James, E.K., Reis, V.M., Olivars, F.L., Baldani, J.I., & Döbereiner, J. 1994.. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J. Exp. Bot. 45: 757–766.Google Scholar
  88. Javot, H., Pumplin, N., & Harrison, M.J. 2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 30: 310–322.PubMedGoogle Scholar
  89. Jin, H., Pfeffer, P.E., Douds, D.D., Piotrowski, E., Lammers, P.J., Shachar-Hill, Y. 2005. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol. 168: 687–696.PubMedGoogle Scholar
  90. Johansen, A. & Jensen, E.S. 1996. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol. Biochem. 28: 73–81.Google Scholar
  91. Johansen, A., Jakobsen, I., & Jensen, E.S. 1994. Hyphal N transport by a vesicular-arbuscular fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160: 1–9.Google Scholar
  92. Johnson, N.C., Graham, J.H., & Smith, F.A. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575–585.Google Scholar
  93. Joner, E.J. & Jakobsen, I. 1995. Uptake of 32P from labelled organic matter by mycorrhizal and non-mycorrhizal subterranean clover ((Trifolium subterraneum L.). Plant Soil 172: 221–227.Google Scholar
  94. Joner, E.J., Van Aarle, I.M., & Vosatka, M. 2000a. Phospatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226: 199–210.Google Scholar
  95. Joner, E.J., Ravnskov, S., & Jakobsen, I. 200b. Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol. Lett. 22: 1705–1708.Google Scholar
  96. Jongmans, A.G., Van Breemen, N., Lundström, U., Van Hees, P.A.W., Finlay, R.D., Srinivasan, M., Unestam, T., Giesler, R., Melkerud, P.-A., & Olsen, M. 1997. Rock-eating fungi. Nature 389: 682–683.Google Scholar
  97. Kaiser, B.N., Layzell, D.B., & Shelp, B.J. 1997. Role of oxygen limitation and nitrate metabolism in the nitrate inhibition of nitrogen fixation by pea. Physiol. Plant. 101: 45–50.Google Scholar
  98. Karandashov, V. & Bucher, M. 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10: 22–29.PubMedGoogle Scholar
  99. Kearns, A., Whelan, J., Young, S., Elthon, T.E., & Day, D.A. 1992. Tissue-specific expression of the alternative oxidase in soybean and siratro. Plant Physiol. 99: 712–717.PubMedCentralPubMedGoogle Scholar
  100. Kennedy, I.R. & Tchan, Y.-T. 1992. Biological nitrogen fixation in non-leguminous field crops: Recent advances. Plant Soil 141: 93–118.Google Scholar
  101. Khaosaad, T., Garcia-Garrido, J.M., Steinkellner, S., & Vierheilig, H. 2007. Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol. Biochem. 39: 727–734.Google Scholar
  102. Klironomos, J.N. & Hart, M.M 2001. Animal nitrogen swap for plant carbon. Nature 410: 651–652.PubMedGoogle Scholar
  103. Klironomos, J.N. Bednarczuk E. M., & Neville J. 1999. Reproductive significance of feeding on saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida Funct. Ecol. 13: 756–761.Google Scholar
  104. Koch, K.E. & Johnson, C.R. 1984. Photosynthetic partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiol. 75: 26–30.PubMedCentralPubMedGoogle Scholar
  105. Koide, R.T. & Kabir, Z. 2000. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 2000 148: 511–517.Google Scholar
  106. Koide, R.T. & Schreiner, R.P. 1992. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 557–581.Google Scholar
  107. Koide, R.T., Huenneke, L.F., Hamburg, S.P., & Mooney, H.A. 1988. Effects of applications of fungicide, phosphorus and nitrogen on the structure and productivity of an annual serpentine plant community. Funct. Ecol. 2: 335–344.Google Scholar
  108. Kwon, D.-K. & Beevers, H. 1992. Growth of Sesbania rostrata (Brem) with stem nodules under controlled conditions. Plant Cell Environ. 15: 939–945.Google Scholar
  109. Lambers, H., Atkin, O.K., & Millenaar, F.F. 2002. Respiratory patterns in roots in relation to their functioning. In: Plant roots: the hidden half, 3rd edition. Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, New York, pp. 521–552.Google Scholar
  110. Lambers, H., Shane, M.W., Cramer, M.D., Pearse, S.J., & Veneklaas, E.J. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98: 693–713.PubMedCentralPubMedGoogle Scholar
  111. Lambers, H., Shaver, G., Raven, J.A., & Smith, S.E. 2008. N- and P-acquisition change as soils age. Trends Ecol. Evol., in press.Google Scholar
  112. Landeweert, R., Hoffland, E., Finlay, R.D., Kuyper, T.W., & Van Breemen, N. 2001. Trends Ecol. Evol. 16: 248–253.PubMedGoogle Scholar
  113. Leake, J.R. 2004. Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr. Opin. Plant Biol. 7: 422–428.PubMedGoogle Scholar
  114. Leake, J.R. & Read, D.J. 1989. The biology of mycorrhiza in the Ericaceae. New Phytol. 112: 69–76.Google Scholar
  115. LePage, B.A., Currah, R.S., Stockey, R.A., & Rothwell, G.W. 1997. Fossil ectomycorrhizae from the middle Eocene. Am. J. Bot. 84: 410–412.PubMedGoogle Scholar
  116. Li, H-Y., Smith, S.E., Holloway, R.E., Zhu, Y-G., & Smith, F.A. 2006. Arbuscular mycorrhizal (AM) fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 172: 536–543.PubMedGoogle Scholar
  117. Limpens, E. & Bisseling, T. 2003. Signaling in symbiosis. Curr. Opin. Plant Sci. 6: 343–350.Google Scholar
  118. Lindblad, P., Atkins, C.A., & Pate, J.S. 1991. N2-fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia riedlei (Fisch. ex Gaud.) Gardn. Plant Physiol. 95: 753–759.PubMedCentralPubMedGoogle Scholar
  119. Lodwig, E. & Poole, P. 2003. Metabolism of Rhizobium bacteroids. Crit. Rev. Plant Sci. 22: 37–78.Google Scholar
  120. Martin, F., Duplessis, S., Ditengou, F., Lagrange, H., Voiblet, C., & Lapeyrie, F. 2001. Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol. 152: 145–154.Google Scholar
  121. Marschner, H. & Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159: 89–102.Google Scholar
  122. Marulanda, A., Azcon, R., & Ruiz-Lozano, J.M. 2003. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol. Plant. 119: 526–533.Google Scholar
  123. Massicotte, H.B. , Melville, L.H., Peterson, R.L., Unestam, T. 1999. Comparative studies of ectomycorrhiza formation in Alnus glutinosa and Pinus resinosa with Paxillus involutus. Mycorrhiza 8: 229–240.Google Scholar
  124. Maxwell, C.A., Hartwig, U.A., Joseph, C.M., & Phillips, D.A. 1989. A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol. 91: 842–847.PubMedCentralPubMedGoogle Scholar
  125. McNeill, A.M. & Wood, M. 1990. Fixation and transfer of nitrogen by white clover to ryegrass. Soil Use Manage. 6: 84–86.Google Scholar
  126. Mellor, R.B. & Collinge, D.B. 1995. A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation. J. Exp. Bot. 46: 1–18.Google Scholar
  127. Mergaert, P., Uchiumi T. Uchiumi, Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A.-E., Barloy-Hubler, F., Galibert, F., Kondorosi, A., & Kondorosi, E. 2006. Eukaryotic control on bacterial cell cycle and differentiation in the rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. USA 103: 5230–5235.PubMedCentralPubMedGoogle Scholar
  128. Mouritzen, P. & Rosendahl, L. 1997. Identification of a transport mechanism for NH4 + in the symbiosome membrane of pea root nodules. Plant Physiol. 115: 519–526.PubMedCentralPubMedGoogle Scholar
  129. Muthukumar, T. Udaiyan, K., & Shanmughavel, P. 2004. Mycorrhiza in sedges—an overview. Mycorrhiza 14: 65–77.PubMedGoogle Scholar
  130. Mylona, P., Pawlowski, K., & Bisseling, T. 1995. Symbiotic nitrogen fixation. Plant Cell 7: 869–885.PubMedCentralPubMedGoogle Scholar
  131. Nadelhoffer, K., Shaver, G., Fry, B., Giblin, A., Johnson, L., & McKane, R. 1996. 15N natural abundances and N use by tundra plants. Oecologia 107: 386–394.Google Scholar
  132. Newman, E.I., Eason, W.R., Eissenstat, D.M., & Ramos, M.I.F.R. 1992. Interactions between plants: the role of mycorrhizae. Mycorrhiza 1: 47–53.Google Scholar
  133. Nicholson, T. 1975. Evolution of vesicular-arbuscular mycorrhizas. In: Endomycorrhizas, F.E. Sanders, B. Mosse, & P.B. Tinker (eds). Academic Press, London, pp. 25–34.Google Scholar
  134. O’Connor, P.J., Smith, S.E., & Smith, F.A. 2002. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol. 154: 209–218.Google Scholar
  135. Oldroyd, G.E.D., Harrison, M.J., & Udvardi, M. 2005. Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses. Plant Physiol. 137: 1205–1210.PubMedCentralPubMedGoogle Scholar
  136. Palus, J.A., Borneman, J., Ludden, P.W., & Triplett, E.W. 1996. A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186: 135–142.Google Scholar
  137. Paszkowski, U. 2006. Mutualism and parasitism: the yin and yang of plant symbioses. Curr. Opin. Plant Biol. 9: 364–370.PubMedGoogle Scholar
  138. Pate, J.S., Lindblad, P., & Atkins, C.A. 1988. Pathway of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 176: 461–471.PubMedGoogle Scholar
  139. Paynel, F., Murray, P.J., & Cliquet, J.B. 2001. Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229: 235–243.Google Scholar
  140. Penas, J.I., Sanchez-Diaz, M., Aguirreola, J., & Becana, M. 1988. Increased stress tolerance of nodule activity in Medicago-Rhizobium-Glomus symbiosis under drought. J. Plant Physiol. 79: 79–83.Google Scholar
  141. Peng, S., Eissenstat, D.M., Graham, J.H., Williams, K., & Hodge, N.C. 1993. Growth depression in mycorrhizal citrus at high-phosphorus supply. Analysis of carbon costs. Plant Physiol. 101: 1063–1071.PubMedCentralPubMedGoogle Scholar
  142. Peoples, M.B., Herridge, D.F., & Ladha, J.K. 1995. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174: 3–28.Google Scholar
  143. Peoples, M.B., Palmer, B., Lilley, D.M., Duc, L.M., & Herridge, D.F. 1996. Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182: 125–137.Google Scholar
  144. Peterson, R.L. & Bonfante, P. 1994. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159: 79–88.Google Scholar
  145. Pfeffer, P.E., Douds, D.D. Jr, Bücking, H., Schwartz, D.P., & Shachar-Hill, Y. 2004. The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol. 163: 617–627.Google Scholar
  146. Phillips, D.A., Dakora, F.D., Sande, E., Joseph, C.M., & Zon, J. 1994. Synthesis, release, and transmission of alfalfa signal to rhizobial symbionts. Plant Soil. 161: 69–80.Google Scholar
  147. Pingret, J.-L., Journet, E.-P., & Barker, D.G. 1998. Rhizobium Nod factor signaling: Evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659–671.PubMedCentralPubMedGoogle Scholar
  148. Radutoiu, S, Madsen, Madsen, E.B., Felle, H.H., Umehara, Y., Gronlund, M., Sato, S., Nakamura, Y., Tabata, S., Dandal, N., & Stougaard, J. 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425: 585–592.PubMedGoogle Scholar
  149. Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N., & Bucher, M. 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462–466.PubMedGoogle Scholar
  150. Read, D.J. 1996. The structure and function of the ericoid mycorrhizal root. Ann. Bot. 77: 365–374.Google Scholar
  151. Read, D.J. & Perez-Moreno, J. 2003. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol. 157: 475–492.Google Scholar
  152. Reddell, P., Yun, Y., & Shipton, W.A. 1997. Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Aust. J. Bot. 45: 41–51.Google Scholar
  153. Requena, N., Breuninger, M., Franken, P., & Ocon, A. 2003. Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol. 132: 1540–1549.PubMedCentralPubMedGoogle Scholar
  154. Richardson, A.E., Djordjevic, M.A., Rolfe, B.G., & Simpson, R.J. 1988. Effects of pH, Ca and Al on the exudation from clover seedlings of compounds that induce the expression of nodulation genes in Rhizobium trifolii. Plant Soil 109: 37–47.Google Scholar
  155. Rousseau, J.V.D. & Reid, C.P.P. 1991. Effects of phosphorus fertilization and mycorrhizal development on phosphorus nutrition and carbon balance of loblolly pine. New Phytol. 92: 75–87.Google Scholar
  156. Ryle, G.J.A. Powell, C.E., & Gordon, A.J. 1985. Short-term changes in CO2-evolution associated with nitrogenase activity in white clover in response to defoliation and photosynthesis. J. Exp. Bot. 36: 634–643.Google Scholar
  157. Sanchez-Diaz, M., Pardo, M., Antolin, M., Pena, J., & Aguirreola, J. 1990. Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant. Sci. 71: 215–221.Google Scholar
  158. Sanders, I.R. & Koide, R.T. 1994. Nutrient acquisition and community structure in co-occurring mycotrophic and non-mycotrophic old-field annuals. Funct. Ecol. 8: 77–84.Google Scholar
  159. Santana, M.A., Pihakaski-Maunschbach, K., Sandal, N., Marcker, K.A., & Smith, A.G. 1998. Evidence that the plant host synthesizes the heme moiety of leghemoglobin in root nodules. Plant Physiol. 116: 1259–1269.PubMedCentralPubMedGoogle Scholar
  160. Scervino, J.M., Ponce, M.A., Erra-Bassells, R., Vierheilig, H, Ocampo, J.A., & Godeas, A. 2005. Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J. Plant Interact. 1: 15–22.Google Scholar
  161. Schulze, E.-D., Chapin III, F.S., & Gebauer, G. 1995. Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100: 406–412.Google Scholar
  162. Selosse, M.-A., Richard, F., He, X., & Simard, S.W. 2006. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol. 21: 621–628.PubMedGoogle Scholar
  163. Shirtliffe, S.J. & Vessey J.K. 1996. A nodulation (Nod+/Fix-) mutant of Phaseolus vulgaris L. has nodules lacking peripheral vascular bundles (Pvb) and is resistant to mycorrhizal infection (Myc). Plant Sci. 118: 209–220.Google Scholar
  164. Smith, S.E. & Gianinazzi-Pearson, V. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Mol. Biol. 39: 221–244.Google Scholar
  165. Smith, S.E. & Read, D.J. 2008. Mycorrhizal symbiosis, 3rd edition. Elsevier, City.Google Scholar
  166. Smith, S.E., Smith, F.A., & Jakobsen, I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133: 16–20.PubMedCentralPubMedGoogle Scholar
  167. Smith, S.E., Smith, F.A., & Jakobsen, I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162: 511–524.Google Scholar
  168. Snellgrove, R.C., Splittstoesser, W.E., Stribley, D.P., & Tinker, P.B. 1982. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol. 92: 75–87.Google Scholar
  169. Spaink, H.P. 1995. The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu. Rev. Phytopathol. 33: 345–368.PubMedGoogle Scholar
  170. Sprent, J.I. 1999. Nitrogen fixation and growth of npn-crop legume species in diverse environments. Persp. Plant Ecol. Evol. Syst. 2: 149–162.Google Scholar
  171. Sprent, J.I. 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174: 11–25.PubMedGoogle Scholar
  172. Sprent, J.I. & James, E.K. 2007. Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol. 144: 575–581.PubMedCentralPubMedGoogle Scholar
  173. Sprent, J.I., Geoghegan, I.E., Whitty, P.W., & James, E.K. 1996. Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia 105: 440–446.Google Scholar
  174. Sturz, A.V. 1995. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 172: 257–263.Google Scholar
  175. Tanaka, Y. & Yano, K. 2005. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell Environ. 28: 1247–1254Google Scholar
  176. Temperton, V.M., Mwangi, P.N., Scherer-Lorenzen, M., Schmid, B., & Buchmann, N. 2007. Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia 151: 190–205.PubMedGoogle Scholar
  177. Thingstrup, I., Rubaek, G., Sibbesen, E., & Jakomsen, I. 1998. Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels. Plant Soil 203: 37–46.Google Scholar
  178. Thompson, B.D., Robson, A.D., & Abbott, L.K. 1986. Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103: 751–765.Google Scholar
  179. Tisdall, J.M. 1994. Possible role of soil microorganisms in aggregation in soils. Plant Soil 159: 115–121.Google Scholar
  180. Tobar, R., Azcón, R., & Barea, J.-M. 1994. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 126: 119–122.Google Scholar
  181. Triplett, E.W. 1996. Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186: 29–38.Google Scholar
  182. Turnbull, M.H., Goodall, R., & Stewart, G.R. 1995. The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant Cell Environ. 18: 1386–1394.Google Scholar
  183. Van Brussel, A.A.N., Tak, T., Boot, K.J.M., & Kijne, J.W. 2002. Autoregulation of root nodule formation: signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp. nigra. Mol. Plant-Microbe Interact. 15: 341–349.Google Scholar
  184. Van Groenigen, K.-J., Six, J., Hungate, B.A., De Graaff, M.-A., Van Breemen, N., & Van Kessel, C. 2006. Element interactions limit soil carbon storage. Proc. Natl. Acad. Sci. USA 103: 6571–6574.PubMedCentralPubMedGoogle Scholar
  185. Vance, C.P. 2002. Root-bacteria interactions. Symbiotic nitrogen fixation. In: Plant roots: the hidden half, 3rd edition, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, New York, pp. 839–868.Google Scholar
  186. Van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., & Sanders, I.R. 1998a. Mycorrhizal fungal diversity determines plant diversity, ecosystem variability and productivity. Nature 396: 69–72.Google Scholar
  187. Van der Heijden, M.G.A., Boller, T., Wiemken, A., & Sanders, I.R. 1998b Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082–2091.Google Scholar
  188. Van Ghelue, M., Løvaas, E., Ringø, E. & Solheim, B. 1997. Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol. Plant. 99: 579–587.Google Scholar
  189. Van Hees, P.A.W., Rosling, A., Essén, S., Godbold D.L., Jones, D.L., & Finlay R.D. 2006. Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol. 169: 367–378.PubMedGoogle Scholar
  190. Van Leerdam, D. M., Williams, P. A., & Cairne, J. W. G. 2001. Phosphate-solubilising abilities of ericoid mycorrhizal endophytes of Woollsia pungens (Epacridaceae). Aust. J. Bot. 49: 75–80.Google Scholar
  191. Van Rhijn, P & Vanderleyden, J. 1995. The Rhizobium-plant symbiosis. Microbiol. Rev. 59: 124–142.PubMedCentralPubMedGoogle Scholar
  192. Vessey, J.K. 1994. Measurement of nitrogenase activity in legume root nodules: in defence of the acetylene reduction assay. Plant Soil 158: 151–162.Google Scholar
  193. Vessey, J.K., Pawlowski, K., & Bergman, B. 2005. N2-fixing symbiosis: legumes, actinorhizal plants, and cycads. Plant Soil 274: 51–78.Google Scholar
  194. Vierheilig, H., Iseli, B., Alt, M., Raikhel, N., Wiemken, A., & Boller, T. 1996. Resistance of Urtica dioica to mycorrhizal colonization: a possible involvement of Urtica dioica agglutinin. Plant Soil 183: 131–136.Google Scholar
  195. Vierheilig, H., Bago, B., Albrecht, C., Poulin, M.-J., & Piché, Y. 1998. Flavonoids and arbuscular-mycorrhizal fungi. In: Flavonoids in the living system, J. Manthey & B. Buslig (eds). Plenum Press, New York, pp. 9–33.Google Scholar
  196. Vierheilig, H. Garcia-Garrido, J.M., Wyss, U., & Piché, Y. 2000. Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol. Biochem. 32: 589–595.Google Scholar
  197. Volpin, H., Elkind, Y., Okon, Y., & Kapulnik, Y. 1994. A vesicular arbuscular mycorrhizal fungus (Glomus intraradices) induces a defense response in alfalfa roots. Plant Physiol. 104: 683–689.PubMedCentralPubMedGoogle Scholar
  198. Wallander, H. 2000. Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomucorrhizal fungi. Plant Soil 218: 249–256.Google Scholar
  199. Wang, B. & Qiu, Y.-L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299–363.PubMedGoogle Scholar
  200. Webster, G., Gough, C., Vasse, J., Batchelor, C.A., O’Callaghan, K.J., Kothari, S.L., Davey, M.R., Dénarié, J., Cocking, E.C. 1997. Interactions of rhizobia with rice and wheat. Plant Soil 194: 115–122.Google Scholar
  201. Wei, H. & Layzell, D.B. 2006. Adenylate-coupled ion movement. A mechanism for the control of nodule permeability to O2 diffusion. Plant Physiol. 141: 280–287.PubMedCentralPubMedGoogle Scholar
  202. White, J., Prell, J., James, E.K., Poole, P. 2007. Nutrient sharing between symbionts. Plant Physiol. 144: 604–614.PubMedCentralPubMedGoogle Scholar
  203. Whitehead, L.F., Tyerman, S.D., Salom, C.L., & Day, D.A. 1995. Transport of fixed nitrogen across symbiotic membranes of legume nodules. Symbiosis 19: 141–154.Google Scholar
  204. Wilson, D. 1993. Fungal endophytes: out of sight but should not be out of mind. Oikos 68: 279–384.Google Scholar
  205. Wright, D.P., Scholes, J.D., & Read, D.J. 1998a. Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ. 21: 209–216.Google Scholar
  206. Wright, D.P., Read, D.J., & Scholes, J.D. 1998b. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ. 21: 881–891.Google Scholar
  207. Wright, D.P., Scholes, J.D., Read, D.J., Rolfe, S.A. 2005. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol. 167: 881–896.PubMedGoogle Scholar
  208. Yao, Q., Li, X., Feng, G., & Christie, P. 2001. Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230: 279–285.Google Scholar
  209. Yoneyama, T., Muraoka, T., Kim, T.H., Decanay, E.V., & Nakanishi, Y. 1997. The natural 15N abundance of sugarcane and neigbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189: 239–244.Google Scholar
  210. Yoneyama, K., Yoneyama, K., Takeuchi, Y., & Sekimoto, H. 2007a. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225: 1031–1038.Google Scholar
  211. Yoneyama, K., Sekimoto, H., Takeuchi ,Y., & Yoneyama, K. 2007b. Regulation of strigolactone exudation by plant nutrients. Abstract 19th Annual Meeting International Plant Growth Substances Association, Puerto Rico, Mexico.Google Scholar
  212. Zabinskey, C.A., Quinn, L., & Callaway, R.M. 2002. Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Funct. Ecol. 16: 758–765.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations