Life Cycles: Environmental Influences and Adaptations

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


Previous chapters have emphasized the physiological responses of mature plants to their environment. The environmental stresses encountered and optimal physiological solutions, however, can change dramatically as plants develop from the seedling to vegetative and reproductive phases.


Seed Bank Seed Coat Gibberellic Acid Physiological Dormancy Solar Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amico, G. & Aizen, M.A. 2000. Mistletoe seed dispersal by a marsupial. Nature 408: 929–930.PubMedGoogle Scholar
  2. Appenroth, K.J., Lenk, G., Goldau, L., & Sharma, R. 2006. Tomato seed germination: Regulation of different response modes by phytochrome B2 and phytochrome A. Plant Cell Environ. 29: 701–709.PubMedGoogle Scholar
  3. Atkinson, D. & Porter, J.R. 1996. Temperature, plant development and crop yields. Trends Plant Sci. 1: 119–124.Google Scholar
  4. Baskin, C.C. & Baskin, J.M. 2001. Seeds; ecology, biogeography, and evolution of dormancy and germination. Academic press, San Diego.Google Scholar
  5. Baskin, J.M. & Baskin, C.C. 2004. A classification system for seed dormancy. Seed Sci. Res. 14: 1–6.Google Scholar
  6. Bazzaz, F.A., Carlson, R.W., & Harper, J.L. 1979. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature 279: 554–555.Google Scholar
  7. Bazzaz, F.A., Chiariello, N.R., Coley, P.D., & Pitelka, L.F. 1987. Allocating resources to reproduction and defense. BioSci. 37: 58–67.Google Scholar
  8. Bernier, G., Kinet, J.-M., & Sachs, R.M. 1981. The physiology of flowering. Vol. I. CRC Press, Boca Raton.Google Scholar
  9. Bliss, D. & Smith, H. 1985. Penetration of light ionto soil and its role in the control of seed germination. Plant Cell Environ. 8: 475–483.Google Scholar
  10. Bewley, J.D. 1997. Breaking down the wall – A role for endo-β-mannanase in release from seed dormancy? Trends Plant Sci. 2: 464–469.Google Scholar
  11. Bewley, J.D. & Black, M. 1994. Seeds – Physiology of development and germination. Plenum Press, New York.Google Scholar
  12. Blaauw-Jansen, G. & Blaauw, O.H. 1975. A shift in the response threshold to red irradiation in dormant lettuce seeds. Acta Bot. Neerl. 24: 199–202.Google Scholar
  13. Bryant, J.P. & Kuropat, P.J. 1980. Selection of winter forage by subarctic browsing vertebrates: The role of plant chemistry. Annu. Rev. Plant Physiol. 11: 261–285.Google Scholar
  14. Bustan, A. & Goldschmidt, E.E. 1998. Estimating the cost of flowering in a grapefruit tree. Plant Cell Environ. 21: 217–224.Google Scholar
  15. Casal, J.J. & Sànchez, R.A. 1998. Phytochromes and seed germination. Seed Sci. Res. 8: 317–329.Google Scholar
  16. Chapin III, F.S., Tieszen, L.L., Lewis, M., Miller, P.C., & McCown, B.H. 1980. Control of tundra plant allocation patterns and growth. In: An arctic ecosystem: The coastal tundra at Barrow, Alaska, J. Brown, P. Miller, L. Tieszen, & F. Bunnell (eds.). Dowden, Hutchinson and Ross, Stroudsburg, pp. 140–185.Google Scholar
  17. Chapman, D.F., Robson, M.J., & Snaydon, R.W. 1992. Physiological integration in the perennial herb Trifolium repens L. Oecologia 89: 338–347.Google Scholar
  18. Coley, P.D. & Aide, T.M. 1989. Red coloration of tropical young leaves: A possible antifungal defence? J. Trop. Ecol. 5: 293–300.Google Scholar
  19. Cook, R.E. 1979. Patterns of juvenile mortality and recruitment in plants. In: Topics in plant population biology, O.T. Solbrig, S. Jain, G.B. Johnson, & P.H. Raven (eds.). Columbia University Press, New York, pp. 207–231.Google Scholar
  20. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., & Coupland, G. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030–1033.PubMedGoogle Scholar
  21. Cozzolino, S. & Widmer, A. 2005. Orchid diversity: An evolutionary consequence of deception? Trends Ecol. Evol. 20: 487–494.Google Scholar
  22. Cresswell, E.G. & Grime, J.P. 1981. Induction of light requirement during seed development and its ecological consequences. Nature 291: 583–585.Google Scholar
  23. De Jong, T.J., Klinkhamer, P.G.L., Nell, H.W., & Troelstra, S.J. 1987. Growth and nutrient accumulation of the biennials Cirsium vulgare and Cynoglossum officinale under nutrient-rich conditions. Oikos 48: 62–72.Google Scholar
  24. De Lange, J.H. & Boucher, C. 1990. Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 56: 700–703.Google Scholar
  25. Derkx, M.P.M. & Karssen, C.M. 1993. Changing sensitivity to light and nitrate but not to gibberellins regulates seasonal dormancy patterns in Sisymbrium officinale seeds. Plant Cell Environ. 16: 469–479.Google Scholar
  26. Dixon, K.W., Roche, S., & Pate, J.S. 1995. The promotive effect of smoke derived from burnt vegetation on seed germination of Western Australian plants. Oecologia 101: 185–192.Google Scholar
  27. Eckhart, V.M. 1992a. The genetics of gender and the effects of gender on floral characteristics in gynodioecius Phacelia linearis (Hydrophyllaceae). Am. J. Bot. 79: 792–800.Google Scholar
  28. Eckhart, V.M. 1992b. Resource compensation and the evolution of gynodioecy in Phacelia linearis (Hydrophyllaceae). Evolution 46: 1313–1328.Google Scholar
  29. Eis, S. Garman, E.H., & Ebell, L.F. 1965. Relation between cone production and diameter increment of Douglas-fir (Pseudotsuga menziesii (Mirb). Franco), grand fir (Abies grandis (Dougl) Lindl), and western white pine (Pinus monitcola Dougl). Can. J. Bot. 43: 1553–1559.Google Scholar
  30. Evans, L.T. 1980. The evolution of crop yield. Am. Sci. 68: 388–397.Google Scholar
  31. Evans, L.T. & Rawson, H.M. 1970. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Aust. J. Biol. Sci. 23: 245–254.Google Scholar
  32. Farnsworth, E.J. & Farrant, J.M. 1998. Reductions in abscisic acid are linked with viviparous reproduction in mangroves. Am. J. Bot. 85: 760–769.PubMedGoogle Scholar
  33. Fenner, M. 1985. Seed ecology. Chapman and Hall, London.Google Scholar
  34. Finch-Savage, W.E. & Leubner-Metzger, G. 2006. Seed dormancy and the control of germination. New Phytol. 171: 501–523.PubMedGoogle Scholar
  35. Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., & Trengove, R.D. 2004a. Molecular weight of a germination-enhancing compound in smoke. Plant Soil 263: 1–4.Google Scholar
  36. Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., & Trengove, R.D. 2004b. A compound from smoke that promotes seed germination. Science 305: 977.Google Scholar
  37. Gan, S. & Amasino, R.M. 1997. Making sense of senescence. Plant Physiol. 113: 313–319.PubMedCentralPubMedGoogle Scholar
  38. Garner, W.W. & Allard, H.A. 1920. Effects of the relative length of night and day and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18: 553–606.Google Scholar
  39. Gifford, R.M., Thorne, J.H., Hitz, W.D., & Giaquinta, R.T. 1984. Crop productivity and photoassimilate partitioning. Science 225: 801–808.PubMedGoogle Scholar
  40. Gorski, T & Gorska, K. 1979. Inhibitory effects of full daylight on the germination of Lactuca sativa. Planta 144: 121–124.PubMedGoogle Scholar
  41. Grime, J.P. 1979. Plant strategies and vegetation processes. Wiley, Chichester.Google Scholar
  42. Grime, J.P. & Jeffrey, D.W. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol. 53: 621–642.Google Scholar
  43. Gross, K.L. 1984. Effects of seed size and growth form on seedling establishment of six monocarpic perennial plants. J. Ecol. 72: 369–387.Google Scholar
  44. Hansen, D.H. 1986. Water relations of compound leaves and phyllodes in Acacia koa var. latifolia. Plant Cell Environ. 9: 439–445.Google Scholar
  45. Hansen, D.H. 1996. Establishment and persistence characteristics in juvenile leaves and phyllodes of Acacia koa (Leguminosae) in Hawaii. Int. J. Plant Sci. 157: 123–128.Google Scholar
  46. Harper, J.L. 1977. Population biology of plants. Academic Press, London.Google Scholar
  47. Heinrich, B. 1975. Energetics of pollination. Annu. Rev. Ecol. Syst. 6: 139–170.Google Scholar
  48. Heinrich B. & Raven, P.H. 1972. Energetics and pollination ecology. Science 176: 597–602.PubMedGoogle Scholar
  49. Hennig, L., Stoddart, W.M., Dieterle, M., Whitelam, G.C., & Schafer, E. 2002. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128: 194–200.PubMedCentralPubMedGoogle Scholar
  50. Hesse, O. 1924. Untersuchungen über die Einwirkung chemischer Stoffe auf die Keimung lichtempfindlicher Samen. Bot. Arch. 5: 133–171.Google Scholar
  51. Hilhorst, H.W.M. & Karssen, C.M. 1989. Nitrate reductase independent stimulation of seed germination in Sisymbrium officinale L. (hedge mustard) by light and nitrate. Ann. Bot. 63: 131–137.Google Scholar
  52. Hilhorst, H.W.M. & Karssen, C.M. 1992. Seed dormancy and germination: The role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul. 11: 225–238.Google Scholar
  53. Horie, T. 1994. Crop ontogeny and development. In: Physiology and determination of crop yield, K.J. Boote, J.M. Bennet, T.R. Sinclair, & G.M. Paulsen (eds.). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp. 153–180.Google Scholar
  54. Howe, H.F. 1985. Seed dispersal by fruit-eating birds and mammals. In: Seed Dispersal, D.R. Murray (ed.). Academic Press, Sydney, pp. 123–189.Google Scholar
  55. Hughes, L., Westoby, M., & Jurado, E. 1994. Convergence of elaiosomes and insect prey: Evidence from ant foraging behaviour and fatty acid composition. Funct. Ecol. 8: 358–365.Google Scholar
  56. Jones, A.M. & Dangl, J.L. 1996. Logjam at the Styx: Programmed cell death in plants. Trends Plant Sci. 1: 114–119.Google Scholar
  57. Jonsdottir, I.S., Callaghan, T.V., & Headly, A.D. 1996. Resource dynamics within arctic clonal plants. Ecol. Bull. 45: 53–64.Google Scholar
  58. Kahn, A.A. 1982. The physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam.Google Scholar
  59. Karssen, C.M. 1982. Seasonal patterns of dormancy in weed seeds. In: The physiology and biochemistry of seed development, dormancy and germination, A.A. Kahn (ed.). Elsevier, Amsterdam, pp. 243–270.Google Scholar
  60. Karssen, C.M. & Hillhorst, H.W.M. 1992. Effect of chemical environment on seed germination. In: Seeds, the ecology of regeneration in plant communities, M. Fenner (ed.). C.A.B. International, Wallingford, pp. 327–348.Google Scholar
  61. Keeley, J.E. 1991. Seed germination and life history syndromes in the Californian chaparral. Bot. Rev. 67: 81–116.Google Scholar
  62. Kjellberg, B., Karlsson, S., & Kerstensson, I. 1982. Effects of heliotropic movements of flowers of Dryas octopetala on gynoecium temperature and seed development. Oecologia 70: 155–160.Google Scholar
  63. Klinkhamer, P.G.L. & De Jong, T.J., & Meelis, E. 1986. Delay of flowering in spear thistle (Cirsium vulgare (Savi. Ten)): Size-effects and devernalization. Oikos 49: 303–308.Google Scholar
  64. Koller, D. & Negbi, M 1959. The regulation of germination in Oryzopsis miliacea. Ecology 40: 20–36.Google Scholar
  65. Koornneef, M. 1997. Plant development: Timing when to flower. Curr. Biol. 7: 651–652.Google Scholar
  66. Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M., & Soppe, W. 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345–370.PubMedGoogle Scholar
  67. Koornneef, M., Bentsink, L., & Hilhorst H. 2002. Seed dormancy and germination. Curr. Opin. Plant Biol. 5: 33–36.PubMedGoogle Scholar
  68. Kursar, T.A. & Coley, P.D. 1991a. Nitrogen content and expansion rate of young leaves of rain forest species: Implications for herbivory. Biotropica 23: 141–150.Google Scholar
  69. Kursar, T.A. & Coley, P.D. 1991b. Delayed greening in tropical trees: An antiherbivore defense? Biotropica 24: 256–262.Google Scholar
  70. Kursar, T.A. & Coley, P.D. 1992a. The consequences of delayed greening during leaf development for light absorption and light use efficiency. Plant Cell Environ. 15: 901–909.Google Scholar
  71. Kursar, T.A. & Coley, P.D. 1992b. Delayed development of the photosynthetic apparatus in tropical rain forest species. Funct. Ecol. 6: 411–422.Google Scholar
  72. Legg, C.J., Maltby, E., Proctor, C.F. 1992. The ecology of severe moorland fire on the North York Moors: Seed distribution and seedling establishment of Calluna vulgaris. J. Ecol. 80: 737–752.Google Scholar
  73. Leishman, M.R. & Westoby, M. 1994. The role of large seed size in shaded conditions: Experimental evidence. Funct. Ecol. 8: 205–214.Google Scholar
  74. Leishman, M.R., Westoby, M., & Jurado, E. 1995. Correlates of seed size variation: A comparison among five temperate floras. J. Ecol. 83: 517–530.Google Scholar
  75. Machackova, I., Eder, J., Motyka, V., Hanus, J., & Krekule, J. 1996. Photoperiodic control of cytokinin transport and metabolism in Chenopodium rubrum. Physiol. Plant. 98: 564–570.Google Scholar
  76. Martinez-Garcia, J.F., Virgos-Soler, A., & Prat, S. 2002. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc. Natl. Acad. Sci. USA 99: 15211–15216.Google Scholar
  77. McAuliffe, J.R., Hamerlynck, E.P., & Eppes, M.C. 2007. Landscape dynamics fostering the development and persistence of long-lived creosotebush (Larrea tridentata) clones in the Mojave Desert. J. Arid Environ. 69: 96–126.Google Scholar
  78. McKee, G.W., Pfeiffer, R.A., & Mohsenin, N.N. 1977. Seedcoat structure in Coronilla varia L. and its relations to hard seed. Agronomy J. 69: 53–58.Google Scholar
  79. Meisert, A., Schulz, D., & Lehmann, H. 1999. Structural features underlying hardseededness in Geraniaceae. Plant Biol. 1: 311–314.Google Scholar
  80. Michaels, D.D. & Amasino, R.M. 2000. Memories of winter: Vernalization and the competence to flower. Plant Cell Environ. 23: 1145–1153.Google Scholar
  81. Mitchell, P.L. & Sheehy J.E. 2006. Supercharging rice photosynthesis to increase yield. New Phytol. 171: 688–693.PubMedGoogle Scholar
  82. Mitich, L.W. 1991. Intriguing world of weeds. Mistletoe – The Christmas weed. Weed Technol. 5: 692–694.Google Scholar
  83. Mouradov, A., Cremer, F., & Coupland, G. 2002. Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell S111–130.Google Scholar
  84. Murray, D.R. (ed.) 1986. Seed dispersal. Academic Press, Sydney.Google Scholar
  85. New, T.R. 1984. A biology of acacias. Oxford University Press, Melbourne.Google Scholar
  86. O’Dowd, D.J. & Gill, A.M. 1985. Seed dispersal syndromes in Australian Acacia. In: Seed dispersal, D.R. Murray (ed.). Academic Press, Sydney, pp. 87–121.Google Scholar
  87. Olsen, J.E., Jensen, E., Junttila, O., & Moritz, T. 1995. Photoperiodic control of endogenous gibberellins in seedlings of Salix pentandra. Physiol. Plant. 93: 639–644.Google Scholar
  88. Olmsted, C.E. 1944. Growth and development in range grasses. IV. Photoperiodic responses in twelve geographic strains of side-oats grama. Bot. Gaz. 106: 46–74.Google Scholar
  89. Peck, S.C., Pawlowski, K., & Kende, H. 1998. Asymmetric responsiveness to ethylene mediates cell elongation in the apical hook of peas. Plant Cell 10: 713–719.PubMedCentralGoogle Scholar
  90. Piñeiro, M. & Coupland, G. 1998. The control of flowering time and floral identity in Arabidopsis. Plant Physiol. 117: 1–8.PubMedCentralPubMedGoogle Scholar
  91. Pizo, M. & Oliviera, P.S. 1998. Interactions between ants of a nonmyrmecochorous neotropical tree, Cabralea canjerana, (Meliaceae), in the Atlantic forest of south-eastern Brazil. Am. J. Bot. 85: 669–674.PubMedGoogle Scholar
  92. Pons, T.L. 1989. Breaking of seed dormancy by nitrate as a gap detection mechanism. Ann. Bot. 63: 139–143.Google Scholar
  93. Pons, T.L. 1991a. Dormancy, germination and mortality of seeds in a chalk-grassland flora. J. Ecol. 79: 765–780.Google Scholar
  94. Pons, T.L. 1991b. Induction of dark dormancy in seeds: Its importance for the seed bank in the soil. Funct. Ecol. 5: 669–675.Google Scholar
  95. Pons, T.L. 2000. Seed responses to light. In: Seeds, the ecology of regeneration in plant communities, 2nd edition, M. Fenner (ed.). C.A.B. International, Wallingford, pp. 237–260.Google Scholar
  96. Pons, T.L. & During, H.J. 1987. Biennial behaviour of Cirsium palustre in ash coppice. Holarct. Ecol. 10: 40–44.Google Scholar
  97. Pons, T.L. & Schröder, H.F.J.M. 1986. Significance of temperature fluctuation and oxygen concentration for germination of the rice field weeds Fimbristylis littoralis and Scirpus juncoides. Oecologia 68: 315–319.Google Scholar
  98. Poot, P. 1997. Reproductive allocation and resource compensation in male-sterile, partially-male sterile and hermaphroditic plants of Plantago lanceolata. Am. J. Bot. 84: 1256–1265.PubMedGoogle Scholar
  99. Preston, C.A., Betts, H., & Baldwin, I.T. 2002. Methyl jasmonate as an allelopathic agent: Sagebrush inhibits germination of a neighboring tobacco, Nicotiana attenuata. J. Chem. Ecol. 28: 2343–2369.PubMedGoogle Scholar
  100. Rabinowitz, D. 1978. Abundance and diaspore weight in rare and common prairie grasses. Oecologia 37: 213–219.Google Scholar
  101. Reaumur, R.A.F. 1735. Observations du thermomètre faites à Paris pendant l’anneé 1735, comparées avec celles qui ont été faites sous la Ligne, à l’Isle de France, à Algeres, & en quelquesunes de nos Isles de l’Amerique. Histoire de l’Academie Royale des Sciences, avec les Mémoires de Mathematique & de Physique pour la même année (Paris). 545–580.Google Scholar
  102. Salisbury, E.J. 1942. The reproductive capacity of plants. Bell, London.Google Scholar
  103. Samach, A. & Coupland, G. 2000. Time measurement and the control of flowering in plants. BioEssays 22: 38–47.PubMedGoogle Scholar
  104. Schiestl, F.P., Peakall, R., Mant, J.M., Ibarra, F., Schulz, C., Franke, S, & Francke, W. 2003. The chemistry of sexual deception in an orchid-wasp pollination system. Science 302: 437–438.PubMedGoogle Scholar
  105. Scopel, A.L., Ballaré, C.L., & Radosevich, S.R. 1994. Photostimulation of seed germination during soil tillage. New Phytol. 126: 145–152.Google Scholar
  106. Seymour, R.S., Gibernau, M., & ITO, K. 2003. Thermogenesis and respiration of inflorescences of the dead horse arum Helicodiceros muscivorus, a pseudothermoregulatory aroid associated with fly pollination. Funct. Ecol. 17: 886–894.Google Scholar
  107. Shaver, G.A., Chapin III, F.S., & Billings, W.D. 1979. Ecotypic differentiation in Carex aquatilis on ice-wedge polygons in the Alaskan coastal tundra. J. Ecol. 67: 1025–1046.Google Scholar
  108. Shipley, B. & Dion, J. 1992. The allometry of seed production in herbaceous angiosperms. Am. Nat. 139: 467–483.Google Scholar
  109. Shirley, B.W. 1996. Flavonoid biosynthesis: “new” functions for an “old” pathway. Trends Plant Sci. 1: 377–382Google Scholar
  110. Simpson, R.J., Lambers, H., & Dalling, M.J. 1983. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L). IV. Development of a quantitative model of the translocation of nitrogen to the grain. Plant Physiol. 71: 7–14.PubMedCentralPubMedGoogle Scholar
  111. Smart, C. 1994. Gene expression during leaf senescence. New Phytol. 126: 419–448.Google Scholar
  112. Stanton, M. & Galen, C. 1989. Consequences of flower heliotropism for reproduction in an alpine buttercup (Ranunculus adoneus). Oecologia 78: 477–485.Google Scholar
  113. Stanton, M. & Galen, C. 1993. Blue light controls solar tracking by flowers of an alpine plant. Plant Cell Environ. 16: 983–989.Google Scholar
  114. Stanton, M.L., Bereczky, J.K., & Hasbrouck, H.D. 1987. Pollination thoroughness and maternal yield regulation in wild radish, Raphanus raphanistrum (Brassicaceae). Oecologia 74: 68–76.Google Scholar
  115. Steinbach, H.S., Benech-Arnold, R.L., & Sanchez, R.A. 1997. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol. 113: 149–154.Google Scholar
  116. Stuefer, J.F. 1995. Separating the effects of assimilate and water integration in clonal fragments by the use of steam-girdling. Abstr. Bot. 19: 75–81.Google Scholar
  117. Stuefer, J.F., De Kroon, H., & During, H.J. 1996. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Funct. Ecol. 10: 328–334.Google Scholar
  118. Takeno, K. & Maeda, T. 1996. Abscisic acid both promotes and inhibits photoperiodic flowering of Pharbitis nil. Physiol. Plant. 98: 467–470.Google Scholar
  119. Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., & Shimamoto, K. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316: 1033–1036.PubMedGoogle Scholar
  120. Terry, I., Moore, C.J., Walter, G.H., Forster, P.I., Roemer, R.B., Donaldson, J.D., & Machin, P.J. 2004. Association of cone thermogenesis and volatiles with pollinator specificity in Macrozamia cycads. Plant Syst. Evol. 243: 233–247.Google Scholar
  121. Thompson, K., Grime, J.P., & Mason, G. 1977. Seed germination response to diurnal fluctuations of temperature. Nature 267: 147–149.PubMedGoogle Scholar
  122. Tomonobu, T., Kawaide, H., Mitsuhashi, W., Inoue, Y., & Kamiya, Y. 1998. Phytochrome regulates gibberllin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol. 118: 1517–1523.Google Scholar
  123. Totland, O. 1996. Flower heliotropism in an alpine population of Ranunculus acris (Ranunculaceae): Effects on flower temperature, insect visitation, and seed production. Am. J. Bot. 83: 452–458.Google Scholar
  124. Van der Burgt, X.M. 1997. Explosive seed dispersal of the rainforest tree Tetrabelinia moreliana (Leguminosae – Caesalpiniodeae) in Gabon. J. Trop. Ecol. 13: 145–151.Google Scholar
  125. Vazquez-Yanes, C., Orozco-Segovia, A., Rincón, E., Sánchez-Coronado, M.E., Huante, P., Toledo, J.R., & Barradas, V.L. 1990. Light beneath the litter in a tropical forest: Effect on seed germination. Ecology 71: 1952–1958.Google Scholar
  126. Vleeshouwers, L.M., Bouwmeester, H.J., & Karssen C.M. 1995. Redefining seed dormancy: An attempt to integrate physiology and ecology. J. Ecol. 83: 1031–1037.Google Scholar
  127. Weiss, M.R. 1991. Floral colour changes as cues for pollinators. Nature 354: 227–229.Google Scholar
  128. Woodall, G.S., Dodd, I.C. & Stewart G.R. 1998. Contrasting leaf development within the genus Syzygium. J. Exp. Bot. 49: 79–87.Google Scholar
  129. Yan, L., Loukoianov, L., Tranquilli, G., Helguera, G., Fahima, T., & Dubcovsky, J. 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100: 6263–6268.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Lambers
    • 1
  • F. Stuart ChapinIII
    • 2
  • Thijs L. Pons
    • 3
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.University of AlaskaFairbanksUSA
  3. 3.Utrecht UniversityThe Netherlands

Personalised recommendations