Skip to main content

Introduction—History, Assumptions, and Approaches

  • Chapter
Plant Physiological Ecology

Abstract

Plant ecophysiology is an experimental science that seeks to describe the physiological mechanisms underlying ecological observations. In other words, ecophysiologists, or physiological ecologists, address ecological questions about the controls over the growth, reproduction, survival, abundance, and geographical distribution of plants, as these processes are affected by interactions of plants with their physical, chemical, and biotic environment. These ecophysiological patterns and mechanisms can help us understand the functional significance of specific plant traits and their evolutionary heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Billings, W.D. 1973. Arctic and alpine vegetation: Similarities, differences, and susceptibility to disturbance. BioScience 23: 697–704.

    Article  Google Scholar 

  • Billings, W.D., Godfrey, P.J., Chabot, B.F., & Bourque, D.P. 1971. Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. Arc. Alp. Res. 3: 277–289.

    Article  Google Scholar 

  • Blackman, V.H. 1919. The compound interest law and plant growth. Ann. Bot. 33: 353–360.

    Google Scholar 

  • Boyer, J.S. 1985. Water transport. Annu. Rev. Plant Physiol. 36: 473–516.

    Article  Google Scholar 

  • Chapin III, F.S., 2003. Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change. Ann. Bot. 91: 455–463.

    Article  Google Scholar 

  • Clarkson, D.T. 1966. Aluminium tolerance in species within the genus Agrostis. J. Ecol. 54: 167–178.

    Article  Google Scholar 

  • Crawford, R.M.M. 1978. Biochemical and ecological similarities in marsh plants and diving animals. Naturwissenschaften 65: 194–201.

    Article  CAS  Google Scholar 

  • Ellenberg, H. 1953. Physiologisches und ökologisches Verhalten derselben Pflanzanarten. Ber. Deutsch. Bot. Ges. 65: 351–361.

    Google Scholar 

  • Field, C.B., Lobell, D.B., Peters, H.A., & Chiariello, N.R. 2007. Feedbacks of terrestrial ecosystems to climate change. Annu. Rev. Env. Res. 32: 1–29.

    Article  Google Scholar 

  • Foley, J.A., Costa, M.H., Delire, C., Ramankutty, N., & Snyder. P. 2003. Green surprise? How terrestrial ecosystems could affect earth's climate. Front. Ecol. Environ. 1: 38–44.

    Google Scholar 

  • Gould, S.J. & Lewontin, R.C. 1979. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationists programme. Proc. R. Soc. Lond. B. 205: 581–598.

    Google Scholar 

  • Grime J.P. 1979. Plant strategies and vegetation processes. Wiley, Chichester.

    Google Scholar 

  • Hammond, P.M. 1995. The current magnitude of biodiversity. In: Global biodiversity assessment, V.H. Heywood (ed.). Cambridge University Press, Cambridge, pp. 113–138.

    Google Scholar 

  • Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data. Science 105: 367–368.

    Article  CAS  PubMed  Google Scholar 

  • Huston, M.A. 1994. Biological diversity. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lambers, H. & Poorter, H. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 22: 187–261.

    Article  Google Scholar 

  • Larcher, W. 1976. Ă–kologie der Pflanzen. Ulmer, Stuttgart.

    Google Scholar 

  • Mooney, H.A. 1972. The carbon balance of plants. Annu. Rev. Ecol. Syst. 3: 315–346.

    Article  CAS  Google Scholar 

  • Mooney, H.A. & Dunn, E.L. 1970. Convergent evolution of Mediterranean-climate sclerophyll shrubs. Evolution 24: 292–303.

    Article  Google Scholar 

  • Pearsall, W.H. 1938. The soil complex in relation to plant communities. J. Ecol. 26: 180–193.

    Article  CAS  Google Scholar 

  • Reich, P.B., Walters, M.B., & Ellsworth, D.S. 1997. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. 94: 13730–13734.

    Google Scholar 

  • Schimper, A.F.W. 1898. Pflanzengeographie und physiologische Grundlage. Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Vrba, E.S. & Gould, S.J. 1986. The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology 12: 217–228.

    Google Scholar 

  • Walter, H. 1973. Die Vegetation der Erde in ökophysiologischer Betrachtung. 3rd ed. Gutsav Fisher Verlag, Jena.

    Google Scholar 

  • Walter, H. 1974. Die Vegetation der Erde. Gustav Fisher Verlag, Jena.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Introduction—History, Assumptions, and Approaches. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_1

Download citation

Publish with us

Policies and ethics