Earth’s polar regions play a pivotal role in climate, both as an important mediator in exchanges between the atmosphere and global ocean, and as a harbinger of climate change. Central to this impact is a thin layer of sea ice that is predominantly seasonal, and at maximum extent (at the end of austral winter) covers roughly 8% of the world ocean area. Sea ice affects climate in several important ways. It effectively insulates the ocean from the cold polar atmosphere, reducing both outgoing longwave radiation and convective heat exchange; it reflects a much higher proportion of incoming shortwave radiation than does open water; and by rejecting salt as it freezes, is capable of producing the cold, saline water that constitutes the end point in mixing processes that determine the density of the abyssal ocean. This chapter discusses the rationale behind a monograph on how sea ice affects atmosphereocean exchanges and how studies of turbulent exchange in the ice-ocean boundary layer have revealed much about how planetary boundary layers (where rotation is important) work in general. It briefly describes pertinent ice-station exercises, and lays out the framework for subsequent chapters.


Southern Ocean Arctic Ocean Planetary Boundary Layer Outgoing Longwave Radiation Beaufort Gyre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aagaard, K., Coachman, L. K., and Carmack, E. C.: On the halocline of the Arctic Ocean. Deep-Sea Res., 28, 529–545 (1981)CrossRefGoogle Scholar
  2. Carsey, F.: Microwave observations of the Weddell Polynya. Mon. Wea. Rev., 108, 2032–2044 (1980)CrossRefGoogle Scholar
  3. Ekman, V. W.: On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astr. Fys., 2, 1–52 (1905)Google Scholar
  4. Fetterer, F., Knowles, K., Meier, W., and Savoie, M.: Sea Ice Index, Boulder, CO, National Snow and Ice Data Center, Digital Media (2007)Google Scholar
  5. Foldvik, A., Gammelsrød, T., and Tørresen, T.: Hydrographic observations from the Weddell Sea during the Norwegian Antarctic Research Expedition 1976/77. Polar Research 3 n.s., 177–193 (1985)Google Scholar
  6. Gordon, A. L.: Seasonality of Southern Ocean sea ice. J. Geophys. Res., 85, 4193–4197 (1981)CrossRefGoogle Scholar
  7. Gordon, A. L.: Two stable modes of Southern Ocean winter stratification. In: Deep Convection and Deep Water Formation in the Oceans, Chu, P.-C. and Gascard, J.-C. (eds.) Elsevier Oceanography Series, 57, pp. 17–35. Elsevier, Amsterdam (1991)CrossRefGoogle Scholar
  8. Gordon, A. L. and Ice Station Weddell Group of Principal Investigators and Chief Scientists: Weddell Sea Exploration from Ice Station. EOS, Trans. Am. Geophys. Union, 74, 121–126 (1993)CrossRefGoogle Scholar
  9. Heiberg, A. and Bjornert, R.: Operations and logistics support, 1972 AIDJEX Pilot Study. AIDJEX Bull., 14, 1–11 (1972)Google Scholar
  10. Hellmer, H. H., Haas, C., Dieckmann, G. S., and Schröder, M.: Sea Ice Feedbacks Observed in Western Weddell Sea. EOS, Trans. Am. Geophys. Union, 87 (18), 173, 179 (2006)CrossRefGoogle Scholar
  11. Hunkins, K.: Ekman drift currents in the Arctic Ocean. Deep-Sea Res., 13, 607–620 (1966)Google Scholar
  12. Martinson, D. G., Killworth, P. D., and Gordon, A. L.: A convective model for the Weddell Polynya. J. Phys. Oceanogr., 11, 466–488 (1981)CrossRefGoogle Scholar
  13. Maykut, G. A. and McPhee, M. G.: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100, 24691–24703 (1995)CrossRefGoogle Scholar
  14. McPhee, M. G.: Is thermobaricity a major factor in Southern Ocean ventilation? Antarctic Science, 15(1), 153–160 (2003)CrossRefGoogle Scholar
  15. McPhee M. G., Ackley, S. F., Guest, P., Huber, B. A., Martinson, D. G., Morison, J. H., Muench, R. D., Padman, L., and Stanton, T. P.: The Antarctic Zone Flux Experiment. Bull. Am. Met. Soc., 77, 1221–1232 (1996)CrossRefGoogle Scholar
  16. McPhee, M. G., Stanton, T. P., Morison, J. H., and Martinson, D.: Freshening of the upper ocean in the Arctic: Is perennial sea ice disappearing?. Geophys. Res. Lett., 25, 1729–1732 (1998)CrossRefGoogle Scholar
  17. McPhee, M. G., Kottmeier, C., and Morison, J. H.: Ocean heat flux in the central Weddell Sea in winter. J. Phys. Oceanogr., 29, 1166–1179 (1999)CrossRefGoogle Scholar
  18. Nghiem, S. V., Chao, Y., Neumann, G., Li, P., Perovich, D. K., Street, T., and Clemente-Colon, P.: Depletion of perennial sea ice in the East Arctic Ocean. Geophys. Res. Lett., 33, L17501 (2006), doi: 10.1029/2006GL027198Google Scholar
  19. Parkinson, C. L. and Washington, W. M.: A large-scale numerical model of sea ice. J. Geophys. Res., 84, 311–337 (1979)CrossRefGoogle Scholar
  20. Perovich, D. K., Tucker, W. B., III, and Ligett, K. A.: Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res., 107 (C10), 8048 (2002), doi: 10.1029/2000JC000449CrossRefGoogle Scholar
  21. Petit, J. R., et al.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Nature, 399, 429–436 (1999)CrossRefGoogle Scholar
  22. Rigor, I. G. and Wallace, J. M.: Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401 (2004), doi: 10.1029/2004GL019492Google Scholar
  23. Schlosser, P., Bayer, R., Foldvik, A., Gammelsrød, T., Rohardt, G., and Munnich, K. O.: Oxygen 18 and helium as tracers of ice shelf water and water/ice interaction in the Weddell Sea. J. Geophys. Res., 95, 3253–3264 (1990)CrossRefGoogle Scholar
  24. Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859–869 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Personalised recommendations