The Neuroanatomy of Pain and Pain Pathways

  • Elie D. Al-Chaer


Our fascination with pain mechanisms possibly dates back to our awareness of our existence. Yet our study of pain pathways only gained focus with the reflex theory advanced by René Descartes in 1664 (Descartes, 1664) and was rejuvenated time and again by a number of subsequent theories, such as the specificity theory (Schiff, 1858) and the sensory interaction theory (Noordenbos, 1959). On the other hand, pattern and neuromatrix theories have discounted the specific function assigned to anatomic components of the nervous system (e.g. Berkley & Hubscher, 1995a; Melzack, 1999; Nafe, 1934), particularly when it comes to pain processing; but they have been faced with challenges of their own, not the least of which is translating their theoretical framework into clinical applications. This chapter highlights recent advances in our knowledge of the pain system including our understanding of nociceptors, of the processing of nociceptive information in the spinal cord, brainstem,...


Receptive Field Dorsal Horn Dorsal Column Medial Thalamus Medial Lemniscus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Ms. Kirsten Garner for assistance with editing the manuscript. This work was supported by NIH Grant RR020146.


  1. Aidar, O., Geohegan, W. A., & Ungewitter, L. H. (1952). Splanchnic afferent pathways in the central nervous system. Journal of Neurophysiology, 15, 131–138.PubMedGoogle Scholar
  2. Al-Chaer, E. D., & Traub, R. J. (2002). Biological basis of visceral pain: Recent developments. Pain, 96(3), 221–225.PubMedCrossRefGoogle Scholar
  3. Al-Chaer, E. D., & Willis, W. D. (2007). Neuroanatomy of visceral pain: Pathways and processes. In P. J. Pasricha, W. D. Willis, & G. F. Gebhart (Eds.), Chronic abdominal and visceral pain: Theory and practice (pp. 33–44). New York: Informa Health Care, Inc.Google Scholar
  4. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996a). Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: A new function for the dorsal column pathway. Journal of Neurophysiology, 76, 2661–2674.Google Scholar
  5. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996b). Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. Journal of Neurophysiology, 76, 2675–2690.Google Scholar
  6. Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1998a). A role for the dorsal column in nociceptive visceral input into the thalamus of primates. Journal of Neurophysiology, 79, 3143–3150.Google Scholar
  7. Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1998b). Visceral pain: A disturbance in the sensorimotor continuum? Pain Forum, 7(3), 117–125.Google Scholar
  8. Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1999). A comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. Journal of Neurophysiology, 82(4), 1876–1882.PubMedGoogle Scholar
  9. Al-Chaer, E. D., Kawasaki, M., & Pasricha, P. J. (2000). A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 119(5), 1276–1285.PubMedCrossRefGoogle Scholar
  10. Albe-Fesssard, D., Levante, A., & Lamour, Y. (1974a). Origin of spinothalamic and spinoreticular pathways in cats and monkeys. Advances in Neurology, 4, 157–166.Google Scholar
  11. Albe-Fesssard, D., Levante, A., & Lamour, Y. (1974b). Origin of spino-thalamic tract in monkeys. Brain Research, 65, 503–509.Google Scholar
  12. Albe-Fessard, D., Berkley, K. J., Kruger, L., Ralston, H. J. III, & Willis, W. D., Jr (1985). Diencephalic mechanisms of pain sensation. Brain Research Reviews, 9, 217–296.CrossRefGoogle Scholar
  13. Amassian, V. E. (1951). Fiber groups and spinal pathways of cortically represented visceral afferents. Journal of Neurophysiology, 14, 445–460.PubMedGoogle Scholar
  14. Ammons, W. S. (1989a). Primate spinothalamic cell responses to ureteral occlusion. Brain Research, 496, 124–30.Google Scholar
  15. Ammons, W. S. (1989b). Electrophysiological characteristics of primate spinothalamic neurons with renal and somatic inputs. Journal of Neurophysiology, 60, 1121–30.Google Scholar
  16. Ammons, W. S., Girardot, M. N., & Foreman, R. D. (1985). T2–T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input. Journal of Neurophysiology, 54, 73–89.PubMedGoogle Scholar
  17. Angaut-Petit, D. (1975a). The dorsal column system: I. Existence of long ascending postsynaptic fibres in the cat's fasciculus gracilis. Experimental Brain Research, 22, 457–470.Google Scholar
  18. Angaut-Petit, D. (1975b). The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat's fasciculus gracilis. Experimental Brain Research, 22, 471–493.Google Scholar
  19. Apkarian, A. V., & Hodge, C. J. J. (1989a). The primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. Journal of Comparative Neurology, 288, 447–473.Google Scholar
  20. Apkarian, A. V., & Hodge, C. J. J. (1989b). The primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. Journal of Comparative Neurology, 288, 474–492.Google Scholar
  21. Apkarian, A. V., & Hodge, C. J. J. (1989c). Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. Journal of Comparative Neurology, 288, 493–511.Google Scholar
  22. Apkarian, A. V., & Shi, T. (1994). Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. Journal of Neuroscience, 14, 6779–95.PubMedGoogle Scholar
  23. Apkarian, A. V., Bushnell, M. C., Treede, R. D., & Zubieta, J. K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9(4), 463–484.PubMedCrossRefGoogle Scholar
  24. Applebaum, A. E., Beall, J. E., Foreman, R. D., & Willis, W. D. (1975). Organization and receptive fields of primate spinothalamic tract neurons. Journal of Neurophysiology, 38, 572–86.PubMedGoogle Scholar
  25. Armour, D. (1927). On the surgery of the spinal cord and its membranes. Lancet, 2, 691–697.CrossRefGoogle Scholar
  26. Aziz, Q., Andersson, J. L., Valind, S., Sundin, A., Hamdy, S., Jones, A. K., et al. (1997). Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology, 113, 50–9.PubMedCrossRefGoogle Scholar
  27. Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. N., Parrish, T. B., et al. (2006). Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. Journal of Neuroscience, 26(47), 12165–12173.PubMedCrossRefGoogle Scholar
  28. Bennett, G. J., Seltzer, Z., Lu, G. W., Nishikawa, N., & Dubner, R. (1983). The cells of origin of the dorsal column postsynaptic projection in the lumbosacral enlargements of cats and monkeys. Somatosensory Research, 1, 131–49.PubMedCrossRefGoogle Scholar
  29. Bennett, G. J., Nishikawa, N., Lu, G. W., Hoffert, M. J., & Dubner, R. (1984). The morphology of dorsal column postsynaptic (DCPS) spino-medullary neurons in the cat. Journal of Comparative Neurology, 224, 568–78.PubMedCrossRefGoogle Scholar
  30. Berkley, K. J. (1980). Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. Journal of Comparative Neurology, 193, 283–317.PubMedCrossRefGoogle Scholar
  31. Berkley, K. J., & Hubscher, C. H. (1995a). Are there separate central nervous system pathways for touch and pain? Nature Medicine, 1(8), 766–773.Google Scholar
  32. Berkley, K. J., & Hubscher, C. H. (1995b). Visceral and somatic sensory tracks through the neuraxis and their relation to pain: Lessons from the rat female reproductive system. In: G. F. Gebhart (Ed.), Visceral Pain (pp. 195–216). Seattle: IASP Press.Google Scholar
  33. Berkley, K. J., Guilbaud, G., Benoist, J., & Gautron, M. (1993). Responses of neurons in and near the thalamic ventrobasal complex of the rat to stimulation of uterus, cervix, vagina, colon, and skin. Journal of Neurophysiology, 69, 557–568.PubMedGoogle Scholar
  34. Besson, J. M., & Chaouch, A. (1987). Peripheral and spinal mechanisms of nociception. Physiological Reviews, 67, 67–186.PubMedGoogle Scholar
  35. Bielefeldt, K., Lamb, K., & Gebhart, G.F. (2006). Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. American Journal of Physiology. Gastrointestinal and Liver Physiology, 291(4), G658–G665.Google Scholar
  36. Birrell, G. J., McQueen, D. S., Iggo, A., & Grubb, B. D. (1993). Prostanoid-induced potentiation of the excitatory and sensitizing effects of bradykinin on articular mechanonociceptors in the rat ankle joint. Neuroscience, 54, 537–44.PubMedCrossRefGoogle Scholar
  37. Blair, R. W., Wenster, R. N., & Foreman, R. D. (1982). Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin in the monkey. Circulation Research, 51, 83–94.PubMedGoogle Scholar
  38. Blair, R. W., Ammons, W. S., & Foreman, R. D. (1984). Responses of thoracic spinothalamic and spinoreticular cells to coronary artery occlusion. Journal of Neurophysiology, 51, 636–48.PubMedGoogle Scholar
  39. Boivie, J. (1979). An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. Journal of Comparative Neurology, 186, 343–370.PubMedCrossRefGoogle Scholar
  40. Boivie, J. (1980). Thalamic projections from lateral cervical nucleus in monkey. A degeneration study. Brain Research, 198(1), 13–26.Google Scholar
  41. Boivie, J., Leijon, G., & Johansson, I. (1989). Central post-stroke pain—a study of the mechanisms through analyses of the sensory abnormalities. Pain, 37, 173–85.PubMedCrossRefGoogle Scholar
  42. Bonica, J. J. (2001). Bonica’s management of pain (3rd ed.) J. D. Loeser (Ed.). Philadelphia, PA: Lippincott Williams and Wilkins.Google Scholar
  43. Bossut, D. F., & Perl, E. R. (1995). Effects of nerve injury on sympathetic excitation of A[delta] mechanical nociceptors. Journal of Neurophysiology, 73, 1721–23.PubMedGoogle Scholar
  44. Brown, A. G., & Franz, D. N. (1969). Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Experimental Brain Research, 7, 231–49.CrossRefGoogle Scholar
  45. Brown, A. G., Fyffe, R. E. W., Noble, R., Rose, P. K., & Snow, P. J. (1980). The density, distribution and topographical organization of spinocervical tract neurones in the cat. Journal of Physiology, 300, 409–28.PubMedGoogle Scholar
  46. Brown-Sequard, E. (1868). Lectures on the physiology and pathology of the central nervous system and on the treatment of organic nervous affections. Lancet, 2, 593–823.CrossRefGoogle Scholar
  47. Brüggemann, J., Shi, T., & Apkarian, A. V. (1994). Squirrel monkey lateral thalamus. II. Viscerosomatic convergent representation of urinary bladder, colon, and esophagus. Journal of Neuroscience, 14, 6796–814.PubMedGoogle Scholar
  48. Bryan, R. N., Coulter, J. D., & Willis, W. D. (1974). Cells of origin of the spinocervical tract in the monkey. Experimental Neurology, 42, 574–86.PubMedCrossRefGoogle Scholar
  49. Burton, H., & Craig, A. D. (1983). Spinothalamic projections in cat, raccoon and monkey: A study based on anterograde transport of horseradish peroxidase. In: G. Macchi, A. Rustioni & R. Spreafico (Eds.), Somatosensory integration in the thalamus (pp. 17–41). New York: Elsevier.Google Scholar
  50. Burton, H., & Jones, E. G. (1976). The posterior thalamic region and its cortical projection in New World and Old World monkeys. Journal of Comparative Neurology, 168, 249–302.PubMedCrossRefGoogle Scholar
  51. Bushnell, M. C., & Duncan, G. H. (1987). Mechanical response properties of ventroposterior medial thalamic neurons in the alert monkey. Experimental Brain Research, 67, 603–14.CrossRefGoogle Scholar
  52. Bushnell, M. C., Duncan, G. H., & Tremblay, N. (1993). Thalamic VPM nucleus in the behaving monkey. I. Multimodal and discriminative properties of thermosensitive neurons. Journal of Neurophysiology, 69, 739–752.PubMedGoogle Scholar
  53. Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: Is there a role for primary somatosensory cortex? Proceedings of the National Academy of Science of the USA, 96(14), 7705–7709.Google Scholar
  54. Campbell, J. N., Meyer, R. A., & Raja, S. N. (1992). Is nociceptor activation by alpha-1 adrenoreceptors the culprit in sympathetically maintained pain? American Pain Society Journal, 1, 3–11.Google Scholar
  55. Carstens, E., & Trevino, D. L. (1978). Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology, 182, 151–166.CrossRefGoogle Scholar
  56. Casey, K. L., & Morrow, T. J. (1983). Ventral posterior thalamic neurons differentially responsive to noxious stimulation of the awake monkey. Science, 221, 675–7.PubMedCrossRefGoogle Scholar
  57. Casey, K. L., & Morrow, T. J. (1987). Nociceptive neurons in the ventral posterior thalamus of the awake squirrel monkey: Observations on identification, modulation, and drug effects. In: J. M. Besson, G. Guilbaud, & M Peschanski (Eds.), Thalamus and pain (pp. 211–226). Amsterdam: Exerpta Medica.Google Scholar
  58. Cervero, F., Iggo, A., & Molony, V. (1977). Responses of spinocervical tract neurones to noxious stimulation of the skin. Journal of Physiology, 267, 537–58.PubMedGoogle Scholar
  59. Chandler, M. J., Hobbs, S. F., Qing-Gong, F., Kenshalo, D. R., Blair, R. W., & Foreman, R. D. (1992). Responses of neurons in ventroposterolateral nucleus of primate thalamus to urinary bladder distension. Brain Research, 571, 26–34.PubMedCrossRefGoogle Scholar
  60. Chaturvedi, SK. (1987). Prevalence of chronic pain in psychiatric patients. Pain, 29, 231–237.PubMedCrossRefGoogle Scholar
  61. Chung, J. M., Kenshalo, D. R., Gerhart, K. D., & Willis, W. D. (1979). Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. Journal of Neurophysiology, 42, 1354–69.PubMedGoogle Scholar
  62. Chung, J. M., Surmeier, D. J., Lee, K. H., Sorkin, L. S., Honda, C. N., Tsong, Y., et al. (1986). Classification of primate spinothalamic and somatosensory thalamic neurons based on cluster analysis. Journal of Neurophysiology, 56, 308–27.PubMedGoogle Scholar
  63. Cliffer, K. D., & Giesler, G. J., Jr. (1989). Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers. Journal of Neuroscience, 9, 3146–68.PubMedGoogle Scholar
  64. Cliffer, K. D., Hasegawa, T., & Willis, W. D. (1992). Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: Basic characterization and antidromic activation from the thalamus. Journal of Neurophysiology, 68, 818–832.PubMedGoogle Scholar
  65. Conti, F., De Biasi, S., Giuffrida, R., & Rustioni, R. (1990). Substance P-containing projections in the dorsal columns of rats and cats. Neuroscience, 34, 607–21.PubMedCrossRefGoogle Scholar
  66. Craig, A. D. (1978). Spinal and medullary input to the lateral cervical nucleus. Journal of Comparative Neurology, 181, 729–44.PubMedCrossRefGoogle Scholar
  67. Craig, A., & Dostrovsky, J. (2001). Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. Journal of Neurophysiology, 86, 856–870.PubMedGoogle Scholar
  68. Craig, A. D., & Zhang, E. T. (2006). Retrograde analyses of spinothalamic projections in the macaque monkey: Input to posterolateral thalamus. Journal of Comparative Neurology, 499 (6), 953–964.PubMedCrossRefGoogle Scholar
  69. Craig, A. D., Linington, A. J., & Kniffki, K. D. (1989). Cells of origin of spinothalamic projections to medial and/or lateral thalamus in the cat. Journal of Comparative Neurology, 289, 568–585.PubMedCrossRefGoogle Scholar
  70. Craig, A. D., Bushnell, M. C., Zhang, E. T., & Blomqvist, A. (1994). A thalamic nucleus specific for pain and temperature sensation. Nature, 372, 770–3.PubMedCrossRefGoogle Scholar
  71. Dahlström, A., & Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurones. Acta Physiologica Scandinavica, 62(suppl 232), 1–55.Google Scholar
  72. Dahlström, A., & Fuxe, K. (1965). Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurons systems. Acta Physiologica Scandinavica, 64(suppl 247), 1–36.Google Scholar
  73. Davidoff, R. A. (1989). The dorsal columns. Neurology, 39, 1377–1385.PubMedGoogle Scholar
  74. Davis, K. D., & Dostrovsky, J. O. (1988). Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Research, 454, 89–100.PubMedCrossRefGoogle Scholar
  75. Davis, K. D., Meyer, R. A., & Campbell, J. N. (1993). Chemosensitivity and sensitization of nociceptive afferents that innervate the hairy skin of monkey. Journal of Neurophysiology, 69, 1071–81.PubMedGoogle Scholar
  76. Davis, K. D., Tasker, R. R., Kiss, Z. H. T., Hutchison, W. D., & Dostrovsky, J. O. (1995). Visceral pain evoked by thalamic microstimulation in humans. NeuroReport, 6, 369–374.Google Scholar
  77. Dell, P., & Olson, R. (1951). Projections thalamiques, corticales et cerebelleuses des afferences viscerales vagales. Comptes rendus des séances de la Société de biologie et de ses filiales, 145, 1084–1088.PubMedGoogle Scholar
  78. Derbyshire, S. W. (2003). A systematic review of neuroimaging data during visceral stimulation. American Journal of Gastroenterology, 98, 12–20.PubMedCrossRefGoogle Scholar
  79. Descartes, R. (1664). L’Homme. Paris: e. Angot.Google Scholar
  80. Dougherty, P. M., Sluka, K. A., Sorkin, L. S., Westlund, K. N., & Willis, W. D. (1992). Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Reearchs Reviews, 17, 1–13.CrossRefGoogle Scholar
  81. Downie, J. W., Ferrington, D. G., Sorkin, L. S., & Willis, W. D. (1988). The primate spinocervicothalamic pathway: Responses of cells of the lateral cervical nucleus and spinocervical tract to innocuous and noxious stimuli. Journal of Neurophysiology, 59, 861–85.PubMedGoogle Scholar
  82. Dray, A., Bettaney, J., Forster, P., & Perkins, M. N. (1988). Bradykinin-induced stimulation of afferent fibres is mediated through protein kinase C. Neuroscience Letters, 91, 301–7.PubMedCrossRefGoogle Scholar
  83. Dray, A., Urban, L., & Dickenson, A. (1994). Pharmacology of chronic pain. Trends in Pharmacological Sciences, 15(6), 190–197.PubMedCrossRefGoogle Scholar
  84. Duggan, A. W., & North, R. A. (1984). Electrophysiology of opioids. Pharmacological Reviews, 35, 219–81.Google Scholar
  85. Duggan, A. W., Hall, J. G., & Headley, P. M. (1977). Enkephalins and dorsal horn neurones of the cat: Effects on responses to noxious and innocuous skin stimuli. British Journal of Pharmacology, 61, 399–408.PubMedGoogle Scholar
  86. Duncan, G. H., Bushnell, M. C., Oliveras, J. L., Bastrash, N., & Tremblay, N. (1993). Thalamic VPM nucleus in the behaving monkey. III. Effects of reversible inactivation by lidocaine on thermal and mechanical discrimination. Journal of Neurophysiology, 70, 2086–96.PubMedGoogle Scholar
  87. Emmers, R. (1966). Seperate relays of tactile, pressure, thermal, and gustatory modalities in the cat thalamus. Proceedings of the Society for Experimental Biology and Medicine, 121, 527–531.Google Scholar
  88. Feng, Y., Cui, M., Al-Chaer, E. D., & Willis, W. D. (1998). Epigastric antinociception by cervical dorsal column lesions in rats. Anesthesiology, 89(2), 411–420.PubMedCrossRefGoogle Scholar
  89. Ferrington, D. G., Sorkin, L. S., & Willis, W. D. (1987). Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. Journal of Physiology, 388, 681–703.PubMedGoogle Scholar
  90. Ferrington, D. G., Downie, J. W., & Willis, W. D. (1988). Primate nucleus gracilis neurons: Responses to innocuous and noxious stimuli. Journal of Neurophysiology, 59, 886–907.PubMedGoogle Scholar
  91. Fillingim R. B. (Ed.) (2000). Sex, gender, and pain. Progress in Pain Research and Management, volume 17. Seattle: IASP Press.Google Scholar
  92. Foerster, O., & Gagel, O. (1932). Die Vorderseitenstrangdurchschneidung beim Menschen. Eine klinisch-patho-physiologisch-anatomische Studie. Zeitschrift für die Gesamte Neurologie und Psychiatrie, 138, 1–92.CrossRefGoogle Scholar
  93. Foreman, R. D., Schmidt, R. F., & Willis, W. D. (1979). Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. Journal of Physiology, 286, 215–31.PubMedGoogle Scholar
  94. Friedman, D. R., Murray, E. A., O'Neill, J. B., & Mishkin, M. (1986). Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch. Journal of Comparative Neurology, 252, 323–47.PubMedCrossRefGoogle Scholar
  95. Gaze, R. M., & Gordon, G. (1954). The representation of cutaneous sense in the thalamus of the cat and monkey. Journal of Experimental Physiology, 39, 279–304.Google Scholar
  96. Giesler, G. J., Jr, & Cliffer, K. D. (1985). Postsynaptic dorsal column pathway of the rat. II. Evidence against an important role in nociception. Brain Research, 326(2), 347–356.PubMedCrossRefGoogle Scholar
  97. Giesler, G. J. J., Menétrey, D., Guilbaud, G., & Besson, J. (1976). Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Research, 118, 320–324.PubMedCrossRefGoogle Scholar
  98. Giesler, G. J. J., Menétrey, D., & Basbaum, A. I. (1979). Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. Journal of Comparative Neurology, 184, 107–126.PubMedCrossRefGoogle Scholar
  99. Giesler, G. J., Yezierski, R. P., Gerhart, K. D., & Willis, W. D. (1981). Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. Journal of Neurophysiology, 46, 1285–308.PubMedGoogle Scholar
  100. Giesler, G. J., Nahin, R. L., & Madsen, A. M. (1984). Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. Journal of Neurophysiology, 51, 260–75.PubMedGoogle Scholar
  101. Gildenberg, P. L., & Hirshberg, R. M. (1984). Limited myelotomy for the treatment of intractable cancer pain. Journal of Neurology, Neurosurgery & Psychiatry, 47, 94–96.CrossRefGoogle Scholar
  102. Gingold, S. I., Greenspan, J. D., & Apkarian, A. V. (1991). Anatomic evidence of nociceptive inputs to primary somatosensory cortex: Relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. Journal of Comparative Neurology, 308, 467–90.PubMedCrossRefGoogle Scholar
  103. Gowers, W. R. (1878). A case of unilateral gunshot injury to the spinal cord. Transactions of the Clinical Society of London, 11, 24–32.Google Scholar
  104. Grundy, D., Al-Chaer, E. D., Aziz, Q., Collins, S. M., Ke, M., Tache, Y., et al. (2006). Fundamentals of neurogastroenterology: Basic science. Gastroenterology, 130(5), 1391–1411.PubMedCrossRefGoogle Scholar
  105. Gybels, J. M., & Sweet, W. H. (Eds.) (1989). Neurosurgical treatment of persistent pain. Basel: Karger.Google Scholar
  106. Ha, H. (1971). Cervicothalamic tract in the Rhesus monkey. Experimental Neurology, 33, 205–12.PubMedCrossRefGoogle Scholar
  107. Häbler, H. J., Jänig, W., & Koltzenburg, M. (1990). Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. Journal of Physiology, 425, 545–562.PubMedGoogle Scholar
  108. Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.Google Scholar
  109. Head, H., & Thompson, T. (1906). The grouping of afferent impulses within the spinal cord. Brain, 29, 537–741.CrossRefGoogle Scholar
  110. Hirai, T., & Jones, E. G. (1989). A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research Reviews, 14, 1–34.PubMedCrossRefGoogle Scholar
  111. Hirshberg, R. M., Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996). Is there a pathway in the posterior funiculus that signals visceral pain? Pain, 67, 291–305.PubMedCrossRefGoogle Scholar
  112. Hitchcock, E. R. (1970). Stereotactic cervical myelotomy. Journal of Neurology, Neurosurgery & Psychiatry, 33, 224–230.CrossRefGoogle Scholar
  113. Hitchcock, E. R. (1974). Stereotactic myelotomy. Proceedings of the Royal Society of Medicine, 67, 771–772.Google Scholar
  114. Hobday, D. I., Aziz, Q., Thacker, N., Hollander, I., Jackson, A., & Thompson, D. G. (2001). A study of the cortical processing of ano-rectal sensation using functional MRI. Brain, 124, 361–8.PubMedCrossRefGoogle Scholar
  115. Hodge, C. J., Apkarian, A. V., & Stevens, R. T. (1896). Inhibition of dorsal-horn cell responses by stimulation of the Kölliker-Fuse nucleus. Journal of Neurosurgery, 65, 825–33.CrossRefGoogle Scholar
  116. Hylden, J. L., Anton, F., & Nahin, R. L. (1989). Spinal lamina I projection neurons in the rat: Collateral innervation of parabrachial area and thalamus. Neuroscience, 28, 27–37.PubMedCrossRefGoogle Scholar
  117. Hyndman, O. R., & Van Epps, C. (1939). Possibility of differential section of the spinothalamic tract. Archives of Surgery, 38, 1036–53.Google Scholar
  118. Jones, E. G. (1985). The Thalamus. New York: Plenum.Google Scholar
  119. Joshi, S. K., Su, X., Porreca, F., & Gebhart, G. F. (2000). Kappa-Opioid receptor agonists modulate visceral nociception at a novel, peripheral site of action. Journal of Neuroscience, 20, 5874–5879.PubMedGoogle Scholar
  120. Kajander, K. C., & Bennett, G. J. (1992). Onset of a painful peripheral neuropathy in rat: A partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons. Journal of Neurophysiology, 68(3), 734–744.PubMedGoogle Scholar
  121. Kawakita, K., Sumiya, E., Murase, K., & Okada, K. (1997). Response characteristics of nucleus submedius neurons to colo-rectal distension in the rat. Neuroscience Research, 28(1), 59–66.PubMedCrossRefGoogle Scholar
  122. Kenshalo, D. R., Leonard, R. B., Chung, J. M., & Willis, W. D. (1979). Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. Journal of Neurophysiology, 42, 1370–89.PubMedGoogle Scholar
  123. Kenshalo, D. R., Giesler, G. J., Leonard, R. B., & Willis, W. D. (1980). Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. Journal of Neurophysiology, 43, 1594–614.PubMedGoogle Scholar
  124. Kenshalo, D. R., Chudler, E. H., Anton, F., & Dubner, R. (1988). SI cortical nociceptive neurons participate in the encoding process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Research, 454, 378–382.PubMedCrossRefGoogle Scholar
  125. Kern, M. K., Jaradeh, S., Arndorfer, R. C., Jesmanowicz, A., Hyde, J., & Shaker, R. (2001). Gender differences in cortical representation of rectal distension in healthy humans. American Journal of Physiology – Gastrointestinal and Liver Physiology, 281, G1512–23.PubMedGoogle Scholar
  126. Kerr, F. W. L. (1975). The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. Journal of Comparative Neurology, 159, 335–56.PubMedCrossRefGoogle Scholar
  127. Kevetter, G. A., & Willis, W. D. (1982). Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Research, 238, 181–185.PubMedCrossRefGoogle Scholar
  128. Kim, Y. S., & Kwon, S. J. (2000). High thoracic midline dorsal column myelotomy for severe visceral pain due to advanced stomach cancer. Neurosurgery, 46(1), 85–92.PubMedCrossRefGoogle Scholar
  129. Kirkup, A. J., Brunsden, A. M., & Grundy, D. (2001). Receptors and transmission in the brain-gut axis: Potential for novel therapies. I. Receptors on visceral afferents. American Journal of Physiology – Gastrointestinal and Liver Physiology, 280, G787–G794.PubMedGoogle Scholar
  130. Klop, E. M., Mouton, L. J., Kuipers, R., & Holstege, G. (2005). Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus. European Journal of Neuroscience, 21, 2159–2166.PubMedCrossRefGoogle Scholar
  131. Konietzny ,F., Perl, E. R., Trevino, D., Light, A., & Hensel, H. (1981). Sensory experiences in man evoked by intraneural electrical stimulation of intact cutaneous afferent fibers. Experimental Brain Research, 42, 219–22.CrossRefGoogle Scholar
  132. Ladabaum, U., Minoshima, S., Hasler, W. L., Cross, D. Chey, W. D., & Owyang, C. (2001). Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology, 120, 369–76.PubMedCrossRefGoogle Scholar
  133. LaMotte, R. H., Thalhammer, J. G., Torebjörk, H. E., & Robinson, C. J. (1982). Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. Journal of Neuroscience, 2, 765–81.PubMedGoogle Scholar
  134. LaMotte, R. H., Thalhammer, J. G., & Robinson, C. J. (1983). Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: A comparison of neural events in monkey with sensory judgments in human. Journal of Neurophysiology, 50, 1–26.PubMedGoogle Scholar
  135. Le Gros Clark, W. E. (1936). The termination of ascending tracts in the thalamus of the macaque monkey. Journal of Anatomy, 71, 7–40.PubMedGoogle Scholar
  136. Lenz, F. A., Gracely, R. H., Hope, E. J., Baker, F. H., Rowland, L. H., Dougherty, P. M., et al. (1994). The sensation of angina can be evoked by stimulation of the human thalamus. Pain, 59, 119–125.PubMedCrossRefGoogle Scholar
  137. Light, A. R. (1992). The initial processing of pain and its descending control: Spinal and trigeminal systems. Basel: Karger.Google Scholar
  138. Light, A., Sedivec, M., Casale, E., & Jones, S. (1993). Physiological and morphological characteristics of spinal neurones projecting to the parabrachial region of the cat. Somatosensory and Motor Research, 10, 309–325.PubMedCrossRefGoogle Scholar
  139. Lynn, B., & Carpenter, S. E. (1982). Primary afferent units from the hairy skin of the rat hind limb. Brain Research, 238(1), 29–43.PubMedCrossRefGoogle Scholar
  140. Maggi, C. A., & Meli, A. (1988). The sensory-efferent function of capsaicin-sensitive sensory neurons. General Pharmacology, 19, 1–43.PubMedGoogle Scholar
  141. Mantyh, P. W. (1983). The spinothalamic tract in the primate: A re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Neuroscience, 9, 847–862.PubMedCrossRefGoogle Scholar
  142. Marshall, G. E., Shehab, S. A., Spike, R. C., & Todd, A. J. (1996). Neurokinin-1 receptors on lumbar spinothalamic neurons in the rat. Neuroscience, 72, 255–263.PubMedCrossRefGoogle Scholar
  143. McLeod, J. G. (1958). The representation of the splanchnic afferent pathways in the thalamus of the cat. Journal of Physiology, 94, 439–452.Google Scholar
  144. McMahon, S. B. (2004). Sensitisation of gastrointestinal tract afferents. Gut, 53, ii13–ii15.PubMedCrossRefGoogle Scholar
  145. McRoberts, J. A., et al. (2001). Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology, 120, 1737–1748.PubMedCrossRefGoogle Scholar
  146. Mehler, W. R. (1962). The anatomy of the so-called “pain tract” in man: An analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In: J. D. French, & R. W. Porter (Eds.), Basic research in paraplegia (pp. 26–55). Springfield: Charles C Thomas.Google Scholar
  147. Mehler, W. R., Feferman, M. E., & Nauta, W. J. H. (1960). Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain, 83, 718–750.PubMedCrossRefGoogle Scholar
  148. Melzack, R. (1999). From the gate to the neuromatrix. Pain 6, S121–S126.PubMedCrossRefGoogle Scholar
  149. Merskey, H. (1989). Pain and psychological medicine. In: P. D. Wall & R. Melzack (Eds.), Textbook of pain, 2nd ed. (pp. 656–66). Edinburgh: Churchill-Livingstone.Google Scholar
  150. Mertz, H., Morgan, V., Tanner, G., Pickens, D., Price, R., Shyr, Y., et al. (2000). Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology, 18, 842–8.CrossRefGoogle Scholar
  151. Meyer, R. A., & Campbell, J. N. (1981). Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science, 213, 1527–9.PubMedCrossRefGoogle Scholar
  152. Milne, R. J., Foreman, R. D., Giesler, G. J., & Willis, W. D. (1981). Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain, 11, 163–83.PubMedCrossRefGoogle Scholar
  153. Mizuno, N., Nakano, K., Imaizumi, M., & Okamoto, M. (1967). The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). Journal of Comparative Neurology, 129, 375–84.PubMedCrossRefGoogle Scholar
  154. Nafe, J. P. (1934). The pressure, pain and temperature senses. In: C. A. Murchison (Ed.), Handbook of general experimental psychology. Worcester, MA: Clark University Press.Google Scholar
  155. Nauta, H. J., Hewitt, E., Westlund, K. N., & Willis, W. D. (1997). Surgical interruption of a midline dorsal column visceral pain pathway. Case report and review of the literature. Journal of Neurosurgery, 86 (3), 538–542.Google Scholar
  156. Nauta, H. J., Soukup, V. M., Fabian, R. H., Lin, J. T., Grady, J. J., Williams, C. G., et al. (2000). Punctate midline myelotomy for the relief of visceral cancer pain. Journal of Neurosurgery, 92 (2 Suppl), 125–130.PubMedGoogle Scholar
  157. Ness, T. J. (2000). Evidence for ascending visceral nociceptive information in the dorsal midline and lateral spinal cord. Pain, 87(1), 83–88.PubMedCrossRefGoogle Scholar
  158. Nijensohn, D. E., & Kerr, F. W. L. (1975). The ascending projections of the dorsolateral funiculus of the spinal cord in the primate. Journal of Comparative Neurology, 161, 459–70.PubMedCrossRefGoogle Scholar
  159. Noble, R., & Riddell, J,S. (1988). Cutaneous excitatory and inhibitory input to neurones of the postsynaptic dorsal column system in the cat. Journal of Physiology, 396, 497–513.PubMedGoogle Scholar
  160. Noordenbos W. (1959). Pain. Amsterdam: Elsevier.Google Scholar
  161. Noordenbos, W., & Wall, P. D. (1976). Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant. Pain, 2, 185–95.CrossRefGoogle Scholar
  162. Ochoa, J., & Torebjörk, E. (1989). Sensations evoked by intraneural microstimulation of C nociceptor fibres in human skin nerves. Journal of Physiology, 415, 583–599.PubMedGoogle Scholar
  163. Olszewski, J. (1952). The thalamus of Macaca mulatta. New York: Karger.Google Scholar
  164. Patterson, J. T., Head, P. A., McNeill, D. L., Chung, K., & Coggeshall, R. E. (1989). Ascending unmyelinated primary afferent fibers in the dorsal funiculus. Journal of Comparative Neurology, 290, 384–90.PubMedCrossRefGoogle Scholar
  165. Patterson, J. T., Coggeshall, R. E., Lee, W. T., & Chung, K. (1990). Long ascending unmyelinated primary afferent axons in the rat dorsal column: Immunohistochemical localizations. Neuroscience Letters, 108, 6–10.PubMedCrossRefGoogle Scholar
  166. Patton, H. D., & Amassian, V. E. (1951). Thalamic relay of splanchnic afferent fibers. American Journal of Physiology, 167, 815–816.Google Scholar
  167. Peng, Y. B., Lin, Q., & Willis, W. D. (1995). The role of 5HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. Journal of Pharmacology and Experimental Therapeutics, 276, 116–24.Google Scholar
  168. Peng, Y. B., Lin, Q., & Willis, W. D. (1996a). Involvement of[alpha]2-adrenoreceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. Journal of Pharmacology and Experimental Therapeutics, 278(1), 125–35.Google Scholar
  169. Peng, Y. B., Lin, Q., & Willis, W. D. (1996b). Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Research, 736(1–2), 189–201.Google Scholar
  170. Petit, D. (1972). Postsynaptic fibres in the dorsal columns and their relay in the nucleus gracilis. Brain Research, 48, 380–384.PubMedCrossRefGoogle Scholar
  171. Peyron, R., et al. (2000). Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain, 84(1), 77–87.PubMedCrossRefGoogle Scholar
  172. Pollin, B., & Albe-Fessard, D. (1979). Organization of somatic thalamus in monkeys with and without section of dorsal spinal tracts. Brain Research, 173, 431–49.PubMedCrossRefGoogle Scholar
  173. Price, D. D., & Mayer, D. J. (1975). Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta. Pain, 1, 59–72.Google Scholar
  174. Price, D. D., Hayes, R. L., Ruda, M. A., & Dubner, R. (1978). Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensation. Journal of Neurophysiology, 41, 933–47.PubMedGoogle Scholar
  175. Proudfit, H. K. (1992). The behavioral pharmacology of the noradrenergic descending system. In: J. -M. Besson & G. Guilbaud (Eds.), Towards the use of noradrenergic agonists for the treatment of pain (pp. 119–36). New York: Elsevier.Google Scholar
  176. Rogers, R. C., Novin, D., & Butcher, L. L. (1979). Hepatic sodium and osmoreceptors activate neurons in the ventrobasal thalamus. Brain Research, 168, 398–403.PubMedCrossRefGoogle Scholar
  177. Ross, M. H., Romrell, L. J., & Kaye, G. I. (1995). Histology; A text and Atlas (3rd ed.). Baltimore: Williams & Wilkins.Google Scholar
  178. Rustioni, A. (1973). Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Research, 51, 81–95.PubMedCrossRefGoogle Scholar
  179. Rustioni, A. (1974). Non-primary afferents to the cuneate nucleus in the brachial dorsal funiculus of the cat. Brain Research, 75, 247–59.PubMedCrossRefGoogle Scholar
  180. Rustioni, A., Hayes, N. L., & O'Neill, S. (1979). Dorsal column nuclei and ascending spinal afferents in macaques. Brain, 102, 95–125.PubMedCrossRefGoogle Scholar
  181. Saab, C. Y., Park, Y. C., & Al-Chaer, E. D. (2004). Thalamic modulation of visceral nociceptive processing in adult rats with neonatal colon irritation. Brain Research, 1008(2), 186–192.PubMedCrossRefGoogle Scholar
  182. Saab, C. Y., Wang, J., Gu C., Garner K. N., & Al-Chaer E. D. (2007). Microglia: A newly discovered role in visceral hypersensitivity? Neuron Glia Biology doi:10.1017/S1740925X07000439Google Scholar
  183. Sarnoff, S. J., Arrowood, J. G., & Chapman, W. P. (1948). Differential spinal block. IV. The investigation of intestinal dyskinesia, colonic atony, and visceral afferent fibers. Surgery, Gynecology & Obstetrics, 86, 571–581.Google Scholar
  184. Sato, J., & Perl, E. R. (1991). Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science, 251, 1608–10.PubMedCrossRefGoogle Scholar
  185. Schaible, H. G., & Schmidt, R. F. (1983). Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. Journal of Neurophysiology, 49, 35–44, 1983.PubMedGoogle Scholar
  186. Schaible, H. G., & Schmidt, R. F. (1985). Effects of an experimental arthritis on the sensory properties of fine articular afferent units. Journal of Neurophysiology, 54, 1109–22.PubMedGoogle Scholar
  187. Schaible, H. G., & Schmidt, R. F. (1988). Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. Journal of Neurophysiology, 60, 2180–95.PubMedGoogle Scholar
  188. Schepelmann, K., Messlinger, K., Schaible, H. G., & Schmidt, R. F. (1992). Inflammatory mediators and nociception in the joint: Excitation and sensitization of slowly conducting afferent fibers of cat's knee by prostaglandin I2. Neuroscience, 50, 237–47.PubMedCrossRefGoogle Scholar
  189. Schiff, J. M. (1858). Lehrbuch der physiologie des menschen I: Muskel and nervenphysiologie (pp. 234: 253–255). Lahr: M Schauenburg.Google Scholar
  190. Schwarcz, J. R. (1976). Stereotactic extralemniscal myelotomy. Journal of Neurology, Neurosurgery and Psychiatry, 39, 53–57.CrossRefGoogle Scholar
  191. Schwarcz, J. R. (1978). Spinal cord stereotactic techniques, trigeminal nucleotomy and extralemniscal myelotomy. Applied Neurophysiology, 41, 99–112.Google Scholar
  192. Sherrington, C. S. (1906). The integrative action of the nervous system (2nd ed., 1947). New Haven: Yale University Press.Google Scholar
  193. Silverman, D. H., Munakata, J. A., Ennes, H., Mandelkern, M. A., Hoh, C. K., & Mayer, E. A. (1997). Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology, 112, 64–72.PubMedCrossRefGoogle Scholar
  194. Smith, M. V., & Apkarian, A. V. (1991). Thalamically projecting cells of the lateral cervical nucleus in monkey. Brain Research, 555, 10–8.PubMedCrossRefGoogle Scholar
  195. Sorkin, L., & Carlton, S. (1997). Spinal anatomy and pharmacology of afferent processing. In T. Yaksh, C. Lynch, W. Zapol, M. Maze, J. Biebuyck & L. Saidman (Eds.), Anesthesia. Biologic Foundations (pp. 577–610). Philadelphia: Lippincott-Raven.Google Scholar
  196. Spiller, W. G. (1905). The occasional clinical resemblance between caries of the vertebrae and lumbothoracic syringomyelia, and the location within the spinal cord of the fibres for the sensations of pain and temperature. University of Pennsylvania Medical Bulletin, 18, 147–54.Google Scholar
  197. Spiller, W. G., & Martin, E. (1912). The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. Journal of the American Medical Association, 58, 1489–90.Google Scholar
  198. Stanley, E. (1840). A case of disease of the posterior columns of the spinal cord. Medico-chirurgical Transactions, 23, 80–84.Google Scholar
  199. Stein, C. (1994). Peripheral opioid analgesia: Mechanisms and therapeutic applications. In: J. M. Besson, G. Guilbaud & H. Ollat H (Eds.), Peripheral neurons in nociception: Physio-pharmacological aspects (pp. 157–65). Paris: John Libbey Eurotext.Google Scholar
  200. Stepniewska, I., Sakai, S.T,, Qi, H. X., & Kaas, J. H. (2003). Somatosensory input to the ventrolateral thalamic region in the macaque monkey: Potential substrate for parkinsonian tremor. Journal of Comparative Neurology, 455, 378–395.PubMedCrossRefGoogle Scholar
  201. Strigo, I. A., Duncan, G. H., Boivin, M., & Bushnell, M. C. (2003). Differentiation of visceral and cutaneous pain in the human brain. Journal of Neurophysiology, 89, 3294–303.PubMedCrossRefGoogle Scholar
  202. Su, X., Sengupta, J. N., & Gebhart, G. F. (1997). Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension. Journal of Neurophysiology, 78, 1003–1012.PubMedGoogle Scholar
  203. Surmeier, D. J., Honda, C. N., & Willis, W. D. (1986a). Responses of primate spinothalamic neurons to noxious thermal stimulation of glabrous and hairy skin. Journal of Neurophysiology, 56, 328–50.Google Scholar
  204. Surmeier, D. J., Honda, C. N., & Willis, W. D. (1986b). Temporal features of the responses of primate spinothalamic neurons to noxious thermal stimulation of hairy and glabrous skin. Journal of Neurophysiology, 56, 351–68.Google Scholar
  205. Todd, A. (2002). Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Experimental Physiology, 87, 245–249.PubMedCrossRefGoogle Scholar
  206. Trevino, D. L., Maunz, R. A., Bryan, R. N., & Willis, W. D. (1972). Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Experimental Neurology, 34, 64–77.PubMedCrossRefGoogle Scholar
  207. Trevino, D. L., Coulter, J. D., & Willis, W. D. (1973). Locations of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. Journal of Neurophysiology, 36, 750–761.PubMedGoogle Scholar
  208. Truex, R. C., Taylor, M. J., Smythe, M. Q., & Gildenberg, P. L. (1965). The lateral cervical nucleus of cat, dog and man. Journal of Comparative Neurology, 139, 93–104.CrossRefGoogle Scholar
  209. Truitt, W. A., Shipley, M. T., Veening, J. G., & Coolen, L. M. (2003). Activation of a subset of lumbar spinothalamic neurons after copulatory behavior in male but not female rats. Journal of Neuroscience, 23, 325–331.PubMedGoogle Scholar
  210. Uddenburg, N. (1966). Studies on modality segragation and second-order neurons in the dorsal funiculus. Experientia, 15, 441–442.CrossRefGoogle Scholar
  211. Uddenburg, N. (1968). Functional organization of long, second-order afferents in the dorsal funiculus. Experimental Brain Research, 4(4), 377–382.Google Scholar
  212. Veldhuijzen, D. S., et al. (2007). Imaging central pain syndromes. Current Pain & Headache Reports, 11(3), 183–189.Google Scholar
  213. Vierck, C. J., & Luck, M. M. (1979). Loss and recovery of reactivity to noxious stimuli in monkeys with primary spinothalamic cordotomies, followed by secondary and tertiary lesions of other cord sectors. Brain, 102, 233–48.PubMedCrossRefGoogle Scholar
  214. Vierck, C. J., Greenspan, J. D., & Ritz, L. A. (1990). Long-term changes in purposive and reflexive responses to nociceptive stimulation following anterolateral chordotomy. Journal of Neuroscience, 10, 2077–95.PubMedGoogle Scholar
  215. Walker, A. E. (1940). The spinothalamic tract in man. Archives of Neurology and Psychiatry, 43, 284–98.Google Scholar
  216. Wall, P., Bery, J., & Saade, N. (1988). Effects of lesions to rat spinal cord lamina I cell projection pathways on reactions to acute and chronic noxious stimuli. Pain, 35, 327–339.PubMedCrossRefGoogle Scholar
  217. Wang, C. C., Willis, W. D., & Westlund, K. N. (1999). Ascending projections from the area around the spinal cord central canal: A Phaseolus vulgaris leucoagglutinin study in rats. Journal of Comparative Neurology, 415(3), 341–367.PubMedCrossRefGoogle Scholar
  218. White, J. C. (1943). Sensory innervation of the viscera: Studies on visceral afferent neurones in man based on neurosurgical procedures for the relief of intractable pain. Research Publications Association for Research in Nervous and Mental Disease, 23, 373–390.Google Scholar
  219. White, J. C., & Sweet, W. H. (1969). Pain and the neurosurgeon. Springfield: Charles C Thomas.Google Scholar
  220. Willis, W. D. (1982). Control of nociceptive transmission in the spinal cord. In: D. Ottoson (Ed.), Progress in sensory physiology 3. Berlin: Springer-Verlag.Google Scholar
  221. Willis, W. D. (1985). The pain system. Basel: Karger.Google Scholar
  222. Willis, W. D., & Coggeshall, R. E. (2004). Sensory mechanisms of the spinal cord, 3rd ed. New York: Plenum Press.Google Scholar
  223. Willis, W. D., & Westlund, K. N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. Journal of Clinical Neurophysiology, 14(1), 2–31.PubMedCrossRefGoogle Scholar
  224. Willis, W. D., Trevino, D. L., Coulter, J. D., & Maunz, R. A. (1974). Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. Journal of Neurophysiology, 37, 358–72.PubMedGoogle Scholar
  225. Willis, W. D., Kenshalo, D. R. J., & Leonard, R. B. (1979). The cells of origin of the primate spinothalamic tract. Journal of Comparative Neurology, 188, 543–574.PubMedCrossRefGoogle Scholar
  226. Willis, W. D., Al-Chaer, E. D., Quast, M. J., & Westlund, K. N. (1999). A visceral pain pathway in the dorsal column of the spinal cord. Proceedings of the National Academy of Sciences (USA), 96(14), 7675–7679.Google Scholar
  227. Woolf, C., & Fitzgerald, M. (1983). The properties of neurons recorded in the superficial dorsal horn of the rat spinal cord. Journal of Comparative Neurology, 221, 313–328.PubMedCrossRefGoogle Scholar
  228. Xie, J., Yoon, Y. W., Yom, S. S., & Chung, J. M. (1995). Norepinephrine rekindles mechanical allodynia in sympathectomized neuropathic rat. Analgesia, 1, 107–13.Google Scholar
  229. Yoss, R. E. (1953). Studies of the spinal cord. Part 3. Pathways for deep pain within the spinal cord and brain. Neurology, 3, 163–75.PubMedGoogle Scholar
  230. Yokota, T., Nishikawa, Y., & Koyama, N. (1988). Distribution of trigeminal nociceptive neurons in nucleus ventralis posteromedialis of primates. In: R. Dubner, G. F. Gebhart, M. R. Bond (Eds.), Pain research and clinical management, vol. 3 (pp. 555–9). Amsterdam: Elsevier.Google Scholar
  231. Zhuo, M., & Gebhart, G. F. (2002). Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology, 122, 1007–1019.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Pediatrics, Internal Medicine, Neurobiology and Developmental SciencesCollege of Medicine, University of Arkansas for Medical Sciences, Biomedical Research CenterLittle RockUSA

Personalised recommendations