Imaging Modalities for Pain

  • Dagfin Matre
  • Tuan Diep Tran


Information transfer in the brain takes place by electrical conduction along axons and chemical interaction between neurons. Functional brain imaging is a general term for techniques measuring correlates of neuronal activity. The techniques used most often are functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalography (EEG), magnetoencephalography (MEG) and MR spectroscopy (Apkarian et al., 2005). The outputs measured are cerebral blood flow (fMRI/PET), electrophysiology (EEG/MEG), neurochemistry (PET/SPECT) and relative chemical concentrations (MR spectroscopy) (Apkarian et al., 2005). In the context of pain research, fMRI is the most commonly used today; not only for activation studies, but for identifying interactions and connectivities between brain regions during the modulation of pain. PET is decreasing in use for pain activation studies, but is becoming increasingly...


Positron Emission Tomography Neuropathic Pain Functional Connectivity Anterior Cingulate Cortex Pain Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Kenneth L. Casey for critically reading a previous version of this manuscript.


  1. al Absi, M., Rokke, P. D. (1991) Can anxiety help us tolerate pain? Pain 46: 43–51PubMedCrossRefGoogle Scholar
  2. Alkire, M. T., White, N. S., Hsieh, R., Haier, R. J. (2004) Dissociable brain activation responses to 5-Hz electrical pain stimulation: a high-field functional magnetic resonance imaging study. Anesthesiology 100: 939–946PubMedCrossRefGoogle Scholar
  3. Amanzio, M., Benedetti, F. (1999) Neuropharmacological dissection of placebo analgesia: expectation – activated opioid systems versus conditioning-activated specific subsystems. Journal of Neuroscience 19: 484–494PubMedGoogle Scholar
  4. Andersson, J. L., Lilja, A., Hartvig, P., Langstrom, B., Gordh, T., Handwerker, H., Torebjork, E. (1997) Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Experimental Brain Research 117: 192–199CrossRefGoogle Scholar
  5. Apkarian, A. V., Bushnell, M. C., Treede, R. D., Zubieta, J. K. (2005) Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain 9: 463–484PubMedCrossRefGoogle Scholar
  6. Arendt-Nielsen, L., Graven-Nielsen, T., Svarrer, H., Svensson, P. (1996) The influence of low back pain on muscle activity and coordination during gait – A clinical and experimental study. Pain 64: 231–240PubMedCrossRefGoogle Scholar
  7. Arendt-Nielsen, L., Yamasaki, H., Nielsen, J., Naka, D., Kakigi, R. (1999) Magnetoencephalographic responses to painful impact stimulation. Brain Research 839: 203–208PubMedCrossRefGoogle Scholar
  8. Bailey, D. L. (1992) 3D acquisition and reconstruction in positron emission tomography. Annals of Nuclear Medicine 6: 123–130PubMedCrossRefGoogle Scholar
  9. Bandettini PA (2001) Selection of the optimal pulse sequence for functional MRI. In: Jezzard P, Matthews PB, Smith SM (eds) Functional MRI. An introduction to methods. Oxford University Press, New York, pp. 123–143Google Scholar
  10. Bantick, S. J., Wise, R. G., Ploghaus, A., Clare, S., Smith, S. M., Tracey, I. (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125: 310–319PubMedCrossRefGoogle Scholar
  11. Baumgartner, U., Buchholz, H. G., Bellosevich, A., Magerl, W., Siessmeier, T., Rolke, R., Hohnemann, S., Piel, M., Rosch, F., Wester, H. J., Henriksen, G., Stoeter, P., Bartenstein, P., Treede, R. D., Schreckenberger, M. (2006) High opiate receptor binding potential in the human lateral pain system. Neuroimage 30: 692–699PubMedCrossRefGoogle Scholar
  12. Beckmann, C. F., DeLuca, M., Devlin, J. T., Smith, S. M. (2005) Investigations into resting-state connectivity using independent component analysis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 360: 1001–1013PubMedCrossRefGoogle Scholar
  13. Benedetti, F., Arduino, C., Amanzio, M. (1999) Somatotopic activation of opioid systems by target-directed expectations of analgesia. Journal of Neuroscience 19: 3639–3648PubMedGoogle Scholar
  14. Benedetti, F., Lanotte, M., Lopiano, L., Colloca, L. (2007) When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience 147: 260–271PubMedCrossRefGoogle Scholar
  15. Benedetti, F., Pollo, A., Lopiano, L., Lanotte, M., Vighetti, S., Rainero, I. (2003) Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. Journal of Neuroscience 23: 4315–4323PubMedGoogle Scholar
  16. Bingel, U., Lorenz, J., Glauche, V., Knab, R., Glascher, J., Weiller, C., Büchel, C. (2004) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage 23: 224–232PubMedCrossRefGoogle Scholar
  17. Bingel, U., Lorenz, J., Schoell, E., Weiller, C., Buchel, C. (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120: 8–15PubMedCrossRefGoogle Scholar
  18. Blomqvist A, Craig AD (1991) Organization of spinal and trigeminal input to the PAG. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization. Plenum Press, New York, pp. 345–363Google Scholar
  19. Bornhövd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C., Büchel, C. (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125: 1326–1336PubMedCrossRefGoogle Scholar
  20. Brooks, J. C., Nurmikko, T. J., Bimson, W. E., Singh, K. D., Roberts, N. (2002) fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15: 293–301PubMedCrossRefGoogle Scholar
  21. Bruckbauer, T., Christian, B., Mantil, J., Valk, P. (2000) 9:–9:15. 3D Data Acquisition for Whole Body Images on the ECAT HR+. Clin.Positron.Imaging 3: 145PubMedCrossRefGoogle Scholar
  22. Büchel, C., Bornhövd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C. (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. Journal Of Neuroscience 22: 970–976PubMedGoogle Scholar
  23. Buchel, C., Dolan, R. J., Armony, J. L., Friston, K. J. (1999) Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. Journal of Neuroscience 19: 10869–10876PubMedGoogle Scholar
  24. Bullmore, E., Fadili, J., Breakspear, M., Salvador, R., Suckling, J., Brammer, M. (2003) Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Statistical Methods in Medical Research. 12: 375–399PubMedCrossRefGoogle Scholar
  25. Burton, H., Videen, T. O., Raichle, M. E. (1993) Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosensory Motor Research 10: 297–308PubMedCrossRefGoogle Scholar
  26. Bush, G., Luu, P., Posner, M. I. (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences 4: 215–222PubMedCrossRefGoogle Scholar
  27. Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., Carrier, B. (1999) Pain perception: is there a role for primary somatosensory cortex? Proceedings of The National Academy of Science of the USA 96: 7705–7709Google Scholar
  28. Buxton, R. B., Uludag, K., Dubowitz, D. J., Liu, T. T. (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23(Suppl 1): S220–S233PubMedCrossRefGoogle Scholar
  29. Casey, K. L. (1999) Forebrain mechanisms of nociception and pain: analysis through imaging. Proceedings of The National Academy of Science of the USA 96: 7668–7674Google Scholar
  30. Casey, K. L., Lorenz, J., Minoshima, S. (2003) Insights into the pathophysiology of neuropathic pain through functional brain imaging. Experimental Neurology 184 Suppl 1: S80–S88PubMedCrossRefGoogle Scholar
  31. Casey, K. L., Minoshima, S., Morrow, T. J., Koeppe, R. A. (1996) Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76: 571–581PubMedGoogle Scholar
  32. Casey, K. L., Morrow, T. J., Lorenz, J., Minoshima, S. (2001) Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85: 951–959PubMedGoogle Scholar
  33. Casey, K. L., Svensson, P., Morrow, T. J., Raz, J., Jone, C., Minoshima, S. (2000) Selective opiate modulation of nociceptive processing in the human brain. Journal of Neurophysiology 84: 525–533PubMedGoogle Scholar
  34. Casey KL, Tran DT (2006) Cortical mechanisms and chronic pain in humans. In: Cervero F, Jensen TS (eds) Handbook of Clinical Neurology. Elsevier, pp. 159–177Google Scholar
  35. Chen, J. I., Ha, B., Bushnell, M. C., Pike, B., Duncan, G. H. (2002) Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. Journal of Neurophysiology 88: 464–474PubMedCrossRefGoogle Scholar
  36. Christmann, C., Koeppe, C., Braus, D. F., Ruf, M., Flor, H. (2007) A simultaneous EEG-fMRI study of painful electric stimulation. Neuroimage 34: 1428–1437PubMedCrossRefGoogle Scholar
  37. Coghill, R. C., Sang, C. N., Maisog, J. M., Iadarola, M. J. (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. Journal of Neurophysiology 82: 1934–1943PubMedGoogle Scholar
  38. Coghill, R. C., Talbot, J. D., Evans, A. C., Meyer, E., Gjedde, A., Bushnell, M. C., Duncan, G. H. (1994) Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14: 4095–4108PubMedGoogle Scholar
  39. Cohen, D. (1972) Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science 175: 664–666PubMedCrossRefGoogle Scholar
  40. Cole, L. J., Farrell, M. J., Duff, E. P., Barber, J. B., Egan, G. F., Gibson, S. J. (2006) Pain sensitivity and fMRI pain-related brain activity in Alzheimer's disease. Brain 129: 2957–2965PubMedCrossRefGoogle Scholar
  41. Colloca, L., Benedetti, F. (2006) How prior experience shapes placebo analgesia. Pain 124: 126–133PubMedCrossRefGoogle Scholar
  42. Craig, A. D., Chen, K., Bandy, D., Reiman, E. M. (2000) Thermosensory activation of insular cortex. Nature Neuroscience 3: 184–190PubMedCrossRefGoogle Scholar
  43. Dannecker, E. A., Price, D. D., Robinson, M. E. (2003) An examination of the relationships among recalled, expected, and actual intensity and unpleasantness of delayed onset muscle pain. Journal of Pain 4: 74–81PubMedCrossRefGoogle Scholar
  44. Davis, K. D. (2003) Neurophysiological and anatomical considerations in functional imaging of pain. Pain 105: 1–3PubMedCrossRefGoogle Scholar
  45. Davis KD (2000) Studies of pain using functional magnetic resonance imaging. In: Casey KL, Bushnell MC (eds) Pain Imaging. Progress in pain research and management. IASP Press, Seattle, pp. 195–210Google Scholar
  46. Davis, K. D., Kwan, C. L., Crawley, A. P., Mikulis, D. J. (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. Journal of Neurophysiology 80: 1533–1546PubMedGoogle Scholar
  47. Davis, K. D., Taylor, S. J., Crawley, A. P., Wood, M. L., Mikulis, D. J. (1997) Functional MRI of pain- and attention-related activations in the human cingulate cortex. Journal of Neurophysiology 77: 3370–3380PubMedGoogle Scholar
  48. Derbyshire, S. W. (2000) Exploring the pain “neuromatrix”. Current Review of Pain 4: 467–477PubMedGoogle Scholar
  49. Derbyshire, S. W. (2003) A systematic review of neuroimaging data during visceral stimulation. American Journal of Gastroenterology 98: 12–20PubMedCrossRefGoogle Scholar
  50. Devor M (2005) Response of nerves to injury in relation to neuropathic pain. In: McMahon S, Koltzenburg M (eds) Wall and Melzack's Textbook of Pain. Elsevier, pp. 905–928Google Scholar
  51. Djouhri, L., Koutsikou, S., Fang, X., McMullan, S., Lawson, S. N. (2006) Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. Journal of Neuroscience 26: 1281–1292PubMedCrossRefGoogle Scholar
  52. Dowman, R. (2001) Attentional set effects on spinal and supraspinal responses to pain. Psychophysiology 38: 451–464PubMedCrossRefGoogle Scholar
  53. Downar, J., Crawley, A. P., Mikulis, D. J., Davis, K. D. (2002) A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. Journal of Neurophysiology 87: 615–620PubMedGoogle Scholar
  54. Drossman, D. A., McKee, D. C., Sandler, R. S., Mitchell, C. M., Cramer, E. M., Lowman, B. C., Burger, A. L. (1988) Psychosocial factors in the irritable bowel syndrome. A multivariate study of patients and nonpatients with irritable bowel syndrome. Gastroenterology 95: 701–708PubMedGoogle Scholar
  55. Druschky, K., Lang, E., Hummel, C., Kaltenhauser, M., Kohlloffel, L. U., Neundorfer, B., Stefan, H. (2000) Pain-related somatosensory evoked magnetic fields induced by controlled ballistic mechanical impacts. Journal of Clinical Neurophysiology 17: 613–622PubMedCrossRefGoogle Scholar
  56. Duncan, G. H., Albanese, M. C. (2003) Is there a role for the parietal lobes in the perception of pain? Advances in Neurology 93: 69–86PubMedGoogle Scholar
  57. Eccleston, C. (1995) The attentional control of pain: methodological and theoretical concerns. Pain 63: 3–10PubMedCrossRefGoogle Scholar
  58. Eccleston, C., Crombez, G. (1999) Pain demands attention: A cognitive-affective model of the interuptive function of pain. Psychological Bulletin 125: 356–366PubMedCrossRefGoogle Scholar
  59. Ernst, T., Hennig, J. (1994) Observation of a fast response in functional MR. Magnetic Resonance Medicine 32: 146–149CrossRefGoogle Scholar
  60. Expectation. “expectation n.” The Concise Oxford English Dictionary, Eleventh edition revised .Ed. Catherine Soanes and Angus Stevenson. Oxford University Press 2006. Oxford Reference Online.Oxford University Press.STAMI.25 June 2007 2006.
  61. Fair, D. A., Brown, T. T., Petersen, S. E., Schlaggar, B. L. (2006) A comparison of analysis of variance and correlation methods for investigating cognitive development with functional magnetic resonance imaging. Developmental Neuropsychology 30: 531–546PubMedCrossRefGoogle Scholar
  62. Farrar, J. T., Berlin, J. A., Strom, B. L. (2003) Clinically important changes in acute pain outcome measures: a validation study. Journal of Pain and Symptom Management 25: 406–411PubMedCrossRefGoogle Scholar
  63. Farrar, J. T., Young, J. P., Jr., LaMoreaux, L., Werth, J. L., Poole, R. M. (2001) Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 94: 149–158PubMedCrossRefGoogle Scholar
  64. Faymonville, M. E., Laureys, S., Degueldre, C., DelFiore, G., Luxen, A., Franck, G., Lamy, M., Maquet, P. (2000) Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 92: 1257–1267PubMedCrossRefGoogle Scholar
  65. Faymonville, M. E., Roediger, L., Del, F. G., Delgueldre, C., Phillips, C., Lamy, M., Luxen, A., Maquet, P., Laureys, S. (2003) Increased cerebral functional connectivity underlying the antinociceptive effects of hypnosis. Brain Research. Cognitive Brain Research 17: 255–262; Copyright Elsevier.PubMedCrossRefGoogle Scholar
  66. Ferretti, A., Del, G. C., Babiloni, C., Caulo, M., Arienzo, D., Tartaro, A., Rossini, P. M., Romani, G. L. (2004) Functional topography of the secondary somatosensory cortex for nonpainful and painful stimulation of median and tibial nerve: an fMRI study. Neuroimage 23: 1217–1225PubMedCrossRefGoogle Scholar
  67. Fields, H. L. (1999) Pain: an unpleasant topic. Pain 83(Suppl 6): S61–S69CrossRefGoogle Scholar
  68. Fields HL, Basbaum AI, Heinricher MM (2005) Central nervous system mechanisms of pain modulation. In: McMahon S, Koltzenburg M (eds) Wall and Melzack's Textbook of Pain. Elsevier.Google Scholar
  69. Flandin, G., Penny, W. D. (2007) Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage 34: 1108–1125PubMedCrossRefGoogle Scholar
  70. Flor, H., Elbert, T., Knecht, S., Wienbruch, C., Pantev, C., Birbaumer, N., Larbig, W., Taub, E. (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375: 482–484PubMedCrossRefGoogle Scholar
  71. Flor, H., Nikolajsen, L., Staehelin, J. T. (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nature Reviews Neuroscience 7: 873–881PubMedCrossRefGoogle Scholar
  72. Frankenstein, U. N., Richter, W., McIntyre, M. C., Remy, F. (2001) Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage 14: 827–836PubMedCrossRefGoogle Scholar
  73. Friston, K. (1994) Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2: 56–78CrossRefGoogle Scholar
  74. Friston, K. J. (2005) Models of brain function in neuroimaging. Annual Review of Psychology 56: 57–87PubMedCrossRefGoogle Scholar
  75. Gatchel, R. J., Polatin, P. B., Mayer, T. G. (1995) The dominant role of psychosocial risk factors in the development of chronic low back pain disability. Spine 20: 2702–2709PubMedCrossRefGoogle Scholar
  76. Gedney, J. J., Logan, H. (2007) Perceived control and negative affect predict expected and experienced acute clinical pain: a structural modeling analysis. Clinical Journal of Pain 23: 35–44PubMedCrossRefGoogle Scholar
  77. Gedney, J. J., Logan, H., Baron, R. S. (2003) Predictors of short-term and long-term memory of sensory and affective dimensions of pain. J Pain 4: 47–55PubMedCrossRefGoogle Scholar
  78. Gracely RH (2005) Studies of pain in human subjects. In: McMahon S, Koltzenburg M (eds) Wall and Melzack's Textbook of Pain. Elsevier.Google Scholar
  79. Gracely, R. H., Geisser, M. E., Giesecke, T., Grant, M. A., Petzke, F., Williams, D. A., Clauw, D. J. (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127: 835–843PubMedCrossRefGoogle Scholar
  80. Hadjipavlou, G., Dunckley, P., Behrens, T. E., Tracey, I. (2006) Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 123: 169–178PubMedCrossRefGoogle Scholar
  81. Hamalainen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., Lounasmaa, O. V. (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 65: 413–97CrossRefGoogle Scholar
  82. Hari, R., Hamalainen, M., Kaukoranta, E., Reinikainen, K., Teszner, D. (1983) Neuromagnetic responses from the second somatosensory cortex in man. Acta Neurologica Scandinavica 68: 207–212PubMedCrossRefGoogle Scholar
  83. Hari, R., Joutsiniemi, S. L., Sarvas, J. (1988) Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. Electroencephalography and Clinical Neurophysiology 71: 64–72PubMedCrossRefGoogle Scholar
  84. Head, H., Holmes, G. (1911) Sensory disturbances from cerebral lesions. Brain 34:Google Scholar
  85. Heymans, M. W., de Vet, H. C., Knol, D. L., Bongers, P. M., Koes, B. W., van, M. W. (2006) Workers' beliefs and expectations affect return to work over 12 months. Journal of Occupational Rehabilitation 16: 685–695PubMedCrossRefGoogle Scholar
  86. Hirsch, M. S., Liebert, R. M. (1998) The physical and psychological experience of pain: the effect of labelling and cold pressor temperature on three pain measures in college women. Pain 77: 41–48PubMedCrossRefGoogle Scholar
  87. Hofbauer, R. K., Rainville, P., Duncan, G. H., Bushnell, M. C. (2001) Cortical representation of the sensory dimension of pain. Journal of Neurophysiology 86: 402–411PubMedGoogle Scholar
  88. Hoffman, H. G., Richards, T. L., Bills, A. R., Van, O. T., Magula, J., Seibel, E. J., Sharar, S. R. (2006) Using FMRI to study the neural correlates of virtual reality analgesia. CNS Spectrums 11: 45–51PubMedGoogle Scholar
  89. Hrobjartsson, A., Gotzsche, P. C. (2001) Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. The New England Journal of Medicine 344: 1594–1602PubMedCrossRefGoogle Scholar
  90. Hsieh, J. C., Belfrage, M., Stone-Elander, S., Hansson, P., Ingvar, M. (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63: 225–236PubMedCrossRefGoogle Scholar
  91. Hsieh, J. C., Hagermark, O., Stahle-Backdahl, M., Ericson, K., Eriksson, L., Stone-Elander, S., Ingvar, M. (1994) Urge to scratch represented in the human cerebral cortex during itch. Journal of Neurophysiology. 72: 3004–3008PubMedGoogle Scholar
  92. Hu, D., Yan, L., Liu, Y., Zhou, Z., Friston, K. J., Tan, C., Wu, D. (2005) Unified SPM-ICA for fMRI analysis. Neuroimage 25: 746–755PubMedCrossRefGoogle Scholar
  93. Huttunen, J., Kobal, G., Kaukoranta, E., Hari, R. (1986) Cortical responses to painful CO2 stimulation of nasal mucosa; a magnetoencephalographic study in man. Electroencephalography And Clinical Neurophysiology 64: 347–349PubMedCrossRefGoogle Scholar
  94. Iannetti, G. D., Niazy, R. K., Wise, R. G., Jezzard, P., Brooks, J. C., Zambreanu, L., Vennart, W., Matthews, P. M., Tracey, I. (2005) Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Neuroimage 28: 708–719PubMedCrossRefGoogle Scholar
  95. Inui, K., Tran, T. D., Qiu, Y., Wang, X., Hoshiyama, M., Kakigi, R. (2002) Pain-related magnetic fields evoked by intra-epidermal electrical stimulation in humans. Clinical Neurophysiology 113: 298–304PubMedCrossRefGoogle Scholar
  96. Jones, A. K., Cunningham, V. J., Ha-Kawa, S., Fujiwara, T., Luthra, S. K., Silva, S., Derbyshire, S., Jones, T. (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. British Journal of Rheumatology 33: 909–916PubMedCrossRefGoogle Scholar
  97. Kain, Z. N., Sevarino, F., Alexander, G. M., Pincus, S., Mayes, L. C. (2000) Preoperative anxiety and postoperative pain in women undergoing hysterectomy. A repeated-measures design. Journal of Psychosomatic Research 49: 417–422PubMedCrossRefGoogle Scholar
  98. Kakigi, R., Inui, K., Tran, D. T., Qiu, Y., Wang, X., Watanabe, S., Hoshiyama, M. (2004) Human brain processing and central mechanisms of pain as observed by electro- and magneto-encephalography. Journal of Chinese Medical Association 67: 377–386Google Scholar
  99. Kakigi, R., Koyama, S., Hoshiyama, M., Kitamura, Y., Shimojo, M., Watanabe, S. (1995) Pain-related magnetic fields following painful CO2 laser stimulation in man. Neuroscience Letters 192: 45–48PubMedCrossRefGoogle Scholar
  100. Kanda, M., Nagamine, T., Ikeda, A., Ohara, S., Kunieda, T., Fujiwara, N., Yazawa, S., Sawamoto, N., Matsumoto, R., Taki, W., Shibasaki, H. (2000) Primary somatosensory cortex is actively involved in pain processing in human. Brain Research 853: 282–289PubMedCrossRefGoogle Scholar
  101. Kiebel, S. J., Friston, K. J. (2004) Statistical parametric mapping for event-related potentials: I. Generic considerations. Neuroimage 22: 492–502PubMedCrossRefGoogle Scholar
  102. Kitamura, Y., Kakigi, R., Hoshiyama, M., Koyama, S., Shimojo, M., Watanabe, S. (1995) Pain-related somatosensory evoked magnetic fields. Electroencephalography and Clinical Neurophysiology 95: 463–474PubMedCrossRefGoogle Scholar
  103. Kitamura, Y., Kakigi, R., Hoshiyama, M., Koyama, S., Watanabe, S., Shimojo, M. (1997) Pain-related somatosensory evoked magnetic fields following lower limb stimulation. Journal of Neurology and Science 145: 187–194CrossRefGoogle Scholar
  104. Knecht, S., Henningsen, H., Elbert, T., Flor, H., Hohling, C., Pantev, C., Birbaumer, N., Taub, E. (1995) Cortical reorganization in human amputees and mislocalization of painful stimuli to the phantom limb. Neuroscience Letters 201: 262–264PubMedCrossRefGoogle Scholar
  105. Knecht, S., Soros, P., Gurtler, S., Imai, T., Ringelstein, E. B., Henningsen, H. (1998) Phantom sensations following acute pain. Pain 77: 209–213PubMedCrossRefGoogle Scholar
  106. Kong, J., White, N. S., Kwong, K. K., Vangel, M. G., Rosman, I. S., Gracely, R. H., Gollub, R. L. (2006) Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Human Brain Mapping 27: 715–721PubMedCrossRefGoogle Scholar
  107. Koyama, T., McHaffie, J. G., Laurienti, P. J., Coghill, R. C. (2005) The subjective experience of pain: where expectations become reality. Proceedings of the National Academy of Science of the USA 102: 12950–12955Google Scholar
  108. Kupers, R., Kehlet, H. (2006) Brain imaging of clinical pain states: a critical review and strategies for future studies. Lancet Neurology 5: 1033–1044PubMedCrossRefGoogle Scholar
  109. Leijon, G., Boivie, J., Johansson, I. (1989) Central post-stroke pain – neurological symptoms and pain characteristics. Pain 36: 13–25PubMedCrossRefGoogle Scholar
  110. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A. (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150–157PubMedCrossRefGoogle Scholar
  111. Lorenz, J., Cross, D., Minoshima, S., Morrow, T., Paulson, P., Casey, K. (2002) A unique representation of heat allodynia in the human brain. Neuron 35: 383PubMedCrossRefGoogle Scholar
  112. Lorenz, J., Minoshima, S., Casey, K. L. (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079–1091PubMedCrossRefGoogle Scholar
  113. Maihofner, C., Kaltenhauser, M., Neundorfer, B., Lang, E. (2002) Temporo-spatial analysis of cortical activation by phasic innocuous and noxious cold stimuli – a magnetoencephalographic study. Pain 100: 281–290PubMedCrossRefGoogle Scholar
  114. Matre, D., Casey, K. L., Knardahl, S. (2006) Placebo-induced changes in spinal cord pain processing. Journal of Neuroscience 26: 559–563PubMedCrossRefGoogle Scholar
  115. Melzack R, Casey KL (1968) Sensory, motivational, and central control determinants of pain: a new conceptual model. In: Kenshalo D, Thomas CC (eds) The skin senses. Springfield, IL, pp. 423–439Google Scholar
  116. Minoshima S, Cross DJ, Koeppe RA, Casey KL (2000) Brain activation studies using PET and SPECT: Execution and analysis. In: Casey KL, Bushnell MC (eds) Pain Imaging. IASP Press, Seattle, pp. 95–121Google Scholar
  117. Mitiche, A., Sekkati, H. (2006) Optical flow 3D segmentation and interpretation: a variational method with active curve evolution and level sets. IEEE Transactions On Pattern Analysis and Machine Intelligence 28: 1818–1829PubMedCrossRefGoogle Scholar
  118. Montgomery, G. H., Kirsch, I. (1997) Classical conditioning and the placebo effect. Pain 72: 107–113PubMedCrossRefGoogle Scholar
  119. Morris, J. S., Ohman, A., Dolan, R. J. (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393: 467–470PubMedCrossRefGoogle Scholar
  120. Nakamura, Y., Paur, R., Zimmermann, R., Bromm, B. (2002) Attentional modulation of human pain processing in the secondary somatosensory cortex: a magnetoencephalographic study. Neuroscience Letters 328: 29–32PubMedCrossRefGoogle Scholar
  121. Ninomiya, Y., Kitamura, Y., Yamamoto, S., Okamoto, M., Oka, H., Yamada, N., Kuroda, S. (2001) Analysis of pain-related somatosensory evoked magnetic fields using the MUSIC (multiple signal classification) algorithm for magnetoencephalography. Neuroreport. 12: 1657–1661PubMedCrossRefGoogle Scholar
  122. Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., Ugurbil, K. (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal 64: 803–812PubMedCrossRefGoogle Scholar
  123. Osborne, T. L., Jensen, M. P., Ehde, D. M., Hanley, M. A., Kraft, G. (2007) Psychosocial factors associated with pain intensity, pain-related interference, and psychological functioning in persons with multiple sclerosis and pain. Pain 127: 52–62PubMedCrossRefGoogle Scholar
  124. Parker, G. J., Roberts, C., Macdonald, A., Buonaccorsi, G. A., Cheung, S., Buckley, D. L., Jackson, A., Watson, Y., Davies, K., Jayson, G. C. (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance on Medicine 56: 993–1000CrossRefGoogle Scholar
  125. Penfield, W., Boldrey, E. (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443CrossRefGoogle Scholar
  126. Petersen, E. T., Zimine, I., Ho, Y. C., Golay, X. (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. British Journal of Radiology 79: 688–701PubMedCrossRefGoogle Scholar
  127. Petrovic, P., Dietrich, T., Fransson, P., Andersson, J., Carlsson, K., Ingvar, M. (2005) Placebo in emotional processing – induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46: 957–969PubMedCrossRefGoogle Scholar
  128. Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M., Hansson, P. (1999) A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 83: 459–470PubMedCrossRefGoogle Scholar
  129. Petrovic, P., Kalso, E., Petersson, K. M., Ingvar, M. (2002) Placebo and opioid analgesia – imaging a shared neuronal network. Science 295: 1737–1740PubMedCrossRefGoogle Scholar
  130. Petrovic, P., Petersson, K. M., Ghatan, P. H., Stone-Elander, S., Ingvar, M. (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85: 19–30PubMedCrossRefGoogle Scholar
  131. Peyron, R., Frot, M., Schneider, F., Garcia-Larrea, L., Mertens, P., Barral, F. G., Sindou, M., Laurent, B., Mauguiere, F. (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 17: 1336–1346PubMedCrossRefGoogle Scholar
  132. Peyron, R., Garcia-Larrea, L., Gregoire, M. C., Convers, P., Lavenne, F., Veyre, L., Froment, J. C., Mauguiere, F., Michel, D., Laurent, B. (1998) Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain 121 (Pt 2): 345–356PubMedCrossRefGoogle Scholar
  133. Peyron, R., Garcia-Larrea, L., Gregoire, M. C., Costes, N., Convers, P., Lavenne, F., Mauguiere, F., Michel, D., Laurent, B. (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122 (Pt 9): 1765–1780PubMedCrossRefGoogle Scholar
  134. Peyron, R., Laurent, B., Garcia-Larrea, L. (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiologie Clinique. 30: 263–288PubMedCrossRefGoogle Scholar
  135. Peyron, R., Schneider, F., Faillenot, I., Convers, P., Barral, F. G., Garcia-Larrea, L., Laurent, B. (2004) An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63: 1838–1846PubMedGoogle Scholar
  136. Phelps, M. E., Kuhl, D. E., Mazziota, J. C. (1981) Metabolic mapping of the brain's response to visual stimulation: studies in humans. Science 211: 1445–1448PubMedCrossRefGoogle Scholar
  137. Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrew, C., Calder, A. J., Bullmore, E. T., Perrett, D. I., Rowland, D., Williams, S. C., Gray, J. A., David, A. S. (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389: 495–498PubMedCrossRefGoogle Scholar
  138. Ploghaus, A., Becerra, L., Borras, C., Borsook, D. (2003) Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends in Cognitive Sciences 7: 197–200PubMedCrossRefGoogle Scholar
  139. Ploghaus, A., Narain, C., Beckmann, C. F., Clare, S., Bantick, S., Wise, R., Matthews, P. M., Rawlins, J. N., Tracey, I. (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. Journal of Neurosciences 21: 9896–9903Google Scholar
  140. Ploghaus, A., Tracey, I., Gati, J. S., Clare, S., Menon, R. S., Matthews, P. M., Rawlins, J. N. (1999) Dissociating pain from its anticipation in the human brain. Science 284: 1979–1981PubMedCrossRefGoogle Scholar
  141. Ploner, M., Gross, J., Timmermann, L., Schnitzler, A. (2002) Cortical representation of first and second pain sensation in humans. Proceedings of the National Academy of Science of the USA 99: 12444–12448Google Scholar
  142. Ploner, M., Schmitz, F., Freund, H. J., Schnitzler, A. (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. Journal of Neurophysiology 81: 3100–3104PubMedGoogle Scholar
  143. Porreca, F., Ossipov, M. H., Gebhart, G. F. (2002) Chronic pain and medullary descending facilitation. TINS 25: 319–325PubMedGoogle Scholar
  144. Porro, C. A., Baraldi, P., Pagnoni, G., Serafini, M., Facchin, P., Maieron, M., Nichelli, P. (2002) Does anticipation of pain affect cortical nociceptive systems? Journal of Neuroscience 22: 3206–3214PubMedGoogle Scholar
  145. Porro, C. A., Cettolo, V., Francescato, M. P., Baraldi, P. (1998) Temporal and intensity coding of pain in human cortex. Journal of Neurophysiology 80: 3312–3320PubMedGoogle Scholar
  146. Price, D. D. (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288: 1769–1772PubMedCrossRefGoogle Scholar
  147. Price DD, Bushnell MC (2004) Overview of pain dimensions and their psychological modulation. In: Price DD, Bushnell MC (eds) IASP Press, Seattle, pp. 3–17Google Scholar
  148. Qiu, Y., Inui, K., Wang, X., Nguyen, B. T., Tran, T. D., Kakigi, R. (2004) Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans. Clinical Neurophysiology 115: 636–646PubMedCrossRefGoogle Scholar
  149. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., Shulman, G. L. (2001) A default mode of brain function. Proceedings of the National Academy of Science of the USA 98: 676–682Google Scholar
  150. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., Bushnell, M. C. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277: 968–971PubMedCrossRefGoogle Scholar
  151. Rauch, S. L., Savage, C. R., Alpert, N. M., Miguel, E. C., Baer, L., Breiter, H. C., Fischman, A. J., Manzo, P. A., Moretti, C., Jenike, M. A. (1995) A positron emission tomographic study of simple phobic symptom provocation. Archives of General Psychiatry 52: 20–28PubMedGoogle Scholar
  152. Rhudy, J. L., Meagher, M. W. (2000) Fear and anxiety: divergent effects on human pain thresholds. Pain 84: 65–75PubMedCrossRefGoogle Scholar
  153. Roelofs, J., Peters, M. L., McCracken, L., Vlaeyen, J. W. (2003) The pain vigilance and awareness questionnaire (PVAQ): further psychometric evaluation in fibromyalgia and other chronic pain syndromes. Pain 101: 299–306PubMedCrossRefGoogle Scholar
  154. Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., Villringer, A. (2001) Somatotopic organization of human secondary somatosensory cortex. Cerebral Cortex 11: 463–473PubMedCrossRefGoogle Scholar
  155. Salaffi, F., Stancati, A., Silvestri, C. A., Ciapetti, A., Grassi, W. (2004) Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. European Journal of Pain 8: 283–291PubMedCrossRefGoogle Scholar
  156. Sawamoto, N., Honda, M., Okada, T., Hanakawa, T., Kanda, M., Fukuyama, H., Konishi, J., Shibasaki, H. (2000) Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. Journal of Neuroscience 20: 7438–7445PubMedGoogle Scholar
  157. Schmahl, C., Bohus, M., Esposito, F., Treede, R. D., Di, S. F., Greffrath, W., Ludaescher, P., Jochims, A., Lieb, K., Scheffler, K., Hennig, J., Seifritz, E. (2006) Neural correlates of antinociception in borderline personality disorder. Archives of General Psychiatry 63: 659–667PubMedCrossRefGoogle Scholar
  158. Schnitzler, A., Ploner, M. (2000) Neurophysiology and functional neuroanatomy of pain perception. Journal of Clinical Neurophysiology 17: 592–603PubMedCrossRefGoogle Scholar
  159. Schweinhardt, P., Glynn, C., Brooks, J., McQuay, H., Jack, T., Chessell, I., Bountra, C., Tracey, I. (2006) An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32: 256–265PubMedCrossRefGoogle Scholar
  160. Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S., Zubieta, J. K. (2006) Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. Journal of Neuroscience 26: 10789–10795PubMedCrossRefGoogle Scholar
  161. Seghier, M. L., Lazeyras, F., Vuilleumier, P., Schnider, A., Carota, A. (2005b) Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. Journal of Pain 6: 208–212Google Scholar
  162. Seghier, M. L., Lazeyras, F., Vuilleumier, P., Schnider, A., Carota, A. (2005a) Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. Journal of Pain 6: 208–212Google Scholar
  163. Seminowicz, D. A., Davis, K. D. (2007) Interactions of pain intensity and cognitive load: the brain stays on task. Cerebral Cortex 17: 1412–1422PubMedCrossRefGoogle Scholar
  164. Seminowicz, D. A., Davis, K. D. (2006) Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 120: 297–306PubMedCrossRefGoogle Scholar
  165. Shepp, L. A., Logan, B. F. (1974) The Fourier reconstruction of a head section. IEEE Transactions on Nuclear Science NS-21: 21–43Google Scholar
  166. Sheth, S. A., Nemoto, M., Guiou, M., Walker, M., Pouratian, N., Toga, A. W. (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42: 347–355PubMedCrossRefGoogle Scholar
  167. Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., Frith, C. D. (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303: 1157–1162PubMedCrossRefGoogle Scholar
  168. Smith SM (2001) Overview of fMRI analysis. In: Jezzard P, Matthews PB, Smith SM (eds) Functional MRI. An introduction to methods. Oxford University Press, New York, pp. 215–227Google Scholar
  169. Spiegel, D. (1991) Neurophysiological correlates of hypnosis and dissociation. Journal of Neuropsychiatry Clinical Neuroscience 3: 440–445Google Scholar
  170. Sprenger, T., Valet, M., Boecker, H., Henriksen, G., Spilker, M. E., Willoch, F., Wagner, K. J., Wester, H. J., Tolle, T. R. (2006) Opioidergic activation in the medial pain system after heat pain. Pain 122: 63–67PubMedCrossRefGoogle Scholar
  171. Stoeter, P., Bauermann, T., Nickel, R., Corluka, L., Gawehn, J., Vucurevic, G., Vossel, G., Egle, U. T. (2007) Cerebral activation in patients with somatoform pain disorder exposed to pain and stress: An fMRI study. Neuroimage 36: 418–430PubMedCrossRefGoogle Scholar
  172. Sullivan, M. J., Thorn, B., Haythornthwaite, J. A., Keefe, F., Martin, M., Bradley, L. A., Lefebvre, J. C. (2001) Theoretical perspectives on the relation between catastrophizing and pain. Clinical Journal of Pain 17: 52–64PubMedCrossRefGoogle Scholar
  173. Suzuki, R., Rygh, L. J., Dickenson, A. H. (2004) Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends in Pharmacological Science 25: 613–617CrossRefGoogle Scholar
  174. Svensson, P. (2007) What can human experimental pain models teach us about clinical TMD? Archives of Oral Biology 52: 391–394PubMedCrossRefGoogle Scholar
  175. Svensson, P., Minoshima, S., Beydoun, A., Morrow, T. J., Casey, K. L. (1997) Cerebral processing of acute skin and muscle pain in humans. Journal of Neurophysiology 78: 450–460PubMedGoogle Scholar
  176. Sweet WH (1982) Cerebral localization of pain. In: Thompson RA, Green JR (eds) New Perspectives in Cerebral Localization. Raven Press, New York, pp. 205–242Google Scholar
  177. Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., Schnitzler, A. (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. Journal of Neurophysiology. 86: 1499–1503PubMedGoogle Scholar
  178. Todd, K. H. (1996) Clinical versus statistical significance in the assessment of pain relief. Annals of Emerging Medicine. 27: 439–441CrossRefGoogle Scholar
  179. Tracey, I. (2005) Functional connectivity and pain: how effectively connected is your brain? Pain 116: 173–174PubMedCrossRefGoogle Scholar
  180. Tracey, I., Ploghaus, A., Gati, J. S., Clare, S., Smith, S., Menon, R. S., Matthews, P. M. (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. Journals of Neuroscience 22: 2748–2752Google Scholar
  181. Tran, T. D., Inui, K., Hoshiyama, M., Lam, K., Qiu, Y., Kakigi, R. (2002) Cerebral activation by the signals ascending through unmyelinated C-fibers in humans: a magnetoencephalographic study. Neuroscience 113: 375–386PubMedCrossRefGoogle Scholar
  182. Turk, D. C. (2000) Statistical significance and clinical significance are not synonyms!. Clinical Journal of Pain 16: 185–187PubMedCrossRefGoogle Scholar
  183. Turner, J. A., Franklin, G., Fulton-Kehoe, D., Sheppard, L., Wickizer, T. M., Wu, R., Gluck, J. V., Egan, K. (2006) Worker recovery expectations and fear-avoidance predict work disability in a population-based workers' compensation back pain sample. Spine 31: 682–689PubMedCrossRefGoogle Scholar
  184. Urban, M. O., Gebhart, G. F. (1999) Supraspinal contributions to hyperalgesia. Proceeding of the National Academy of Science of the USA 96: 7687–7692Google Scholar
  185. Valet, M., Sprenger, T., Boecker, H., Willoch, F., Rummeny, E., Conrad, B., Erhard, P., Tolle, T. R. (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109: 399–408PubMedCrossRefGoogle Scholar
  186. Van Damme, S., Crombez, G., Eccleston, C. (2004) Disengagement from pain: the role of catastrophic thinking about pain. Pain 107: 70–76PubMedCrossRefGoogle Scholar
  187. van den Hout, J. H., Vlaeyen, J. W., Houben, R. M., Soeters, A. P., Peters, M. L. (2001) The effects of failure feedback and pain-related fear on pain report, pain tolerance, and pain avoidance in chronic low back pain patients. Pain 92: 247–257Google Scholar
  188. Wager, T. D. (2005) The neural bases of placebo effects in anticipation and pain. Seminars in Pain Medicine 3: 22–30CrossRefGoogle Scholar
  189. Wager, T. D., Matre, D., Casey, K. L. (2006) Placebo effects in laser-evoked pain potentials. Brain, Behavior, and Immunity 20: 219–230PubMedCrossRefGoogle Scholar
  190. Wager, T. D., Phan, K. L., Liberzon, I., Taylor, S. F. (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19: 513–531PubMedCrossRefGoogle Scholar
  191. Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., Kosslyn, S. M., Rose, R. M., Cohen, J. D. (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303: 1162–1167PubMedCrossRefGoogle Scholar
  192. Wager, T. D., Scott, D. J., Zubieta, J. K. (2007) Placebo effects on human {micro}-opioid activity during pain. Proceedings of the National Academy of Science of the USA Google Scholar
  193. Wagner, K. J., Sprenger, T., Kochs, E. F., Tolle, T. R., Valet, M., Willoch, F. (2007) Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 106: 548–556PubMedCrossRefGoogle Scholar
  194. White JC, Sweet WH (1969) Pain and the Neurosurgeon. A Forty-Year Experience. C.C. Thomas, Springfield IllinoisGoogle Scholar
  195. Willoch, F. PET studies on pain and analgesia: brain activity changes & opioidergic mechanisms. 2001. Dept of Pharmacology, University of Oslo, Norway. Ref Type: Thesis/DissertationGoogle Scholar
  196. Willoch, F., Schindler, F., Wester, H. J., Empl, M., Straube, A., Schwaiger, M., Conrad, B., Tolle, T. R. (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108: 213–220PubMedCrossRefGoogle Scholar
  197. Wise, R. G., Tracey, I. (2006) The role of fMRI in drug discovery. Journal of Magnetic Resonance Imaging 23: 862–876PubMedCrossRefGoogle Scholar
  198. Woolrich, M. W., Behrens, T. E. (2006) Variational Bayes inference of spatial mixture models for segmentation. IEEE Transactions on Medical Imaging 25: 1380–1391PubMedCrossRefGoogle Scholar
  199. Worsley K (2001) Statistical activation of activation images. In: Jezzard P, Matthews PB, Smith SM (eds) Functional MRI. An introduction to methods. Oxford University Press, New York, pp. 251–270Google Scholar
  200. Xu, X., Fukuyama, H., Yazawa, S., Mima, T., Hanakawa, T., Magata, Y., Kanda, M., Fujiwara, N., Shindo, K., Nagamine, T., Shibasaki, H. (1997) Functional localization of pain perception in the human brain studied by PET. Neuroreport 8: 555–559PubMedCrossRefGoogle Scholar
  201. Zimmerman, J. E., Thiene, P., Harding, J. T. (1970) Design and operation of stable rf-biased superconductiong point-contact quantum devices and a note on the properties of perfectly clean metal contacts. Journal of Applied Physiology 41: 1572–1580CrossRefGoogle Scholar
  202. Zubieta, J. K., Bueller, J. A., Jackson, L. R., Scott, D. J., Xu, Y., Koeppe, R. A., Nichols, T. E., Stohler, C. S. (2005) Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. Journal of Neuroscience 25: 7754–7762PubMedCrossRefGoogle Scholar
  203. Zubieta, J. K., Smith, Y. R., Bueller, J. A., Xu, Y., Kilbourn, M. R., Jewett, D. M., Meyer, C. R., Koeppe, R. A., Stohler, C. S. (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293: 311–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dagfin Matre
    • 1
  • Tuan Diep Tran
  1. 1.National Institute of Occupational HealthNorway

Personalised recommendations