Calcium Regulation and Signaling in Apicomplexan Parasites

  • Kisaburo Nagamune
  • Silvia N. Moreno
  • Eduardo N. Chini
  • L. David Sibley
Part of the Subcellular Biochemistry book series (SCBI, volume 47)


Apicomplexan parasites rely on calcium-mediated signaling for a variety of vital functions including protein secretion, motility, cell invasion, and differentiation. These functions are controlled by a variety of specialized systems for uptake and release of calcium, which acts as a second messenger, and on the functions of calcium-dependent proteins. Defining these systems in parasites has been complicated by their evolutionary distance from model organisms and practical concerns in working with small, and somewhat fastidious cells. Comparative genomic analyses of Toxoplasma gondii, Plasmodium spp. and Cryptosporidium spp. reveal several interesting adaptations for calcium-related processes in parasites. Apicomplexans contain several P-type Ca2+ ATPases including an ER-type reuptake mechanism (SERCA), which is the proposed target of artemisinin. All three organisms also contain several genes related to Golgi PMR-like calcium transporters, and a Ca2+/H+ exchanger, while plasma membrane-type (PMCA) Ca2+ ATPases and voltage-dependent calcium channels are exclusively found in T. gondii. Pharmacological evidence supports the presence of IP3 and ryanodine channels for calcium-mediated release. Collectively these systems regulate calcium homeostasis and release calcium to act as a signal. Downstream responses are controlled by a family of EF-hand containing calcium binding proteins including calmodulin, and an array of centrin and caltractin-like genes. Most surprising, apicomplexans contain a diversity of calcium-dependent protein kinases (CDPK), which are commonly found in plants. Toxoplasma contains more than 20 CDPK or CDPK-like proteases, while Plasmodium and Cryptosporidium have fewer than half this number. Several of these CDPKs have been shown to play vital roles in protein secretion, invasion, and differentiation, indicating that disruption of calcium-regulated pathways may provide a novel means for selective inhibition of parasites.


Intracellular Calcium Plasmodium Falciparum Toxoplasma Gondii Cyclopiazonic Acid Apicomplexan Parasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldauf SL. The deep roots of eukaryotes. Science 2003; 300:1703–1706.PubMedCrossRefGoogle Scholar
  2. 2.
    Foth BJ, McFadden GI. The apicoplast: A plastid in Plasmodium falciparum and other apicomplexan parasites. Int Rev Cytol 2003; 224:57–110.PubMedCrossRefGoogle Scholar
  3. 3.
    Dzierszinski F, Popescu O, Toursel C et al. The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexans. J Biol Chem 1999; 274:24888–24895.PubMedCrossRefGoogle Scholar
  4. 4.
    Morrissette NS, Mitra A, Sept D et al. Dinitroanalines bind alpha-tubulin to disrupt microtubules. Molec Bio Cell 2004; 15:1960–1968.CrossRefGoogle Scholar
  5. 5.
    Huang J, Mullapudi N, Sicheritz-Ponten T et al. A first glimpse into the pattern and scale of gene transfer in the Apicomplexa. Intl J Parasitol 2004; 34:265–274.CrossRefGoogle Scholar
  6. 6.
    Eckstein-Ludwig U, Webb RJ, van Goethem IDA et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003; 424:957–961.PubMedCrossRefGoogle Scholar
  7. 7.
    Berridge MJ, Lipp P, Bootman MD. Signal transduction. The calcium entry pas de deux. Science 2000; 287:1604–1605.PubMedCrossRefGoogle Scholar
  8. 8.
    Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 2000; 1:11–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsien RW. Calcium channels, stores, and oscillations. Annu Rev Cell Biol 1990; 6:715–760.PubMedCrossRefGoogle Scholar
  10. 10.
    Moreno SNJ, Zhong L. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem J 1996; 313:655–659.PubMedGoogle Scholar
  11. 11.
    Garcia CRS. Calcium homeostasis and signaling in the blood-stage malaria parasite. Parasitol Today 1999; 15:11–17.Google Scholar
  12. 12.
    Rohrback P, Freidrich O, Hentschel J et al. Quantitative calcium measurements in subcellular compartments of Plasmodium falciparum infected erythrocytes. J Biol Chem 2005; 280:27960–27969.CrossRefGoogle Scholar
  13. 13.
    Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260:3440–3450.PubMedGoogle Scholar
  14. 14.
    Gazarini ML, Garcia CR. The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations. Biochem Biophys Res Comm 2004; 321:138–144.PubMedCrossRefGoogle Scholar
  15. 15.
    Uyemura SA, Luo S, Moreno SN et al. Oxidative phosphorylation, Ca2+ transport, and fatty acid-induce uncoupling in malaria parasites mitochondria. J Biol Chem 2000; 275:9709–9715.PubMedCrossRefGoogle Scholar
  16. 16.
    Luo S, Vieira M, Graves J et al. A plasma membrane-type Ca2+-ATPase colocalizes with a vacuolar H+-pyrophosphatase to acidocalcisomes of Toxoplasma gondii. EMBO J 2001; 20:55–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Marchesini N, Luo S, Rodrigues CO et al. Acidocalcisomes and vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 2000; 347 (Pt 1):243–253.PubMedCrossRefGoogle Scholar
  18. 18.
    Docampo R, Souza W, Miranda K et al. Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 2005; 3:251–261.PubMedCrossRefGoogle Scholar
  19. 19.
    Bouchot A, Jaillet JD, Bonhomme A et al. Detection and localization of a Ca2+-ATPase activity in Toxoplasma gondii. Cell Struct Funct 2001; 26:49–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Moreno SNJ, Zhong L, Lu HG et al. Vacuolar-type H+-ATPase regulates cytoplasmic pH in Toxoplasma gondii tachyzoites. Biochem J 1998; 330:853–860.PubMedGoogle Scholar
  21. 21.
    Rodrigues CO, Scott DA, Bailey BN et al. Vacuolar proton pyrophosphatase activity and pyrophosphate [PPi] in Toxoplasma gondii as possible chemotherapeutic targets. Biochem J 2000; 349:737–745.PubMedGoogle Scholar
  22. 22.
    Rodrigues CO, Ruiz FA, Rohloff P et al. Characterization of isolated acidocalcisomes from Toxoplasma gondii tachyzoites reveals a novel pool of hydrolyzable polyphosphate. J Biol Chem 2002; 277:48650–48656.PubMedCrossRefGoogle Scholar
  23. 23.
    Ruiz FA, Luo S, Moreno SN et al. Polyphosphate content and fine structure of acidocalcisomes of Plasmodium falciparum. Microsc Microanal 2004; 10:563–567.PubMedCrossRefGoogle Scholar
  24. 24.
    Biagini GA, Bray PG, Spiller DG et al. The digestive food vacuole of the malaria parasite is a dynamic intracellular Ca2+ store. J Biol Chem 2003; 278:27910–27915.PubMedCrossRefGoogle Scholar
  25. 25.
    Nagata T, Iizumi S, Satoh K et al. Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Molec Biol Evol 2004; 21:1855–1870.PubMedCrossRefGoogle Scholar
  26. 26.
    Luo S, Ruiz FA, Moreno SN. The acidocalcisome Ca2+ ATPase (TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Molec Micro 2005; 55:1034–1045.CrossRefGoogle Scholar
  27. 27.
    Nagamune K, Sibley LD. Comparative genomic analysis of calcium ATPases and calcium-regulated proteins in the Apicomplexa. Molec Biol Evol 2006; 23:1613–1627.PubMedCrossRefGoogle Scholar
  28. 28.
    Dyer M, Jackson M, McWhinney C et al. Analysis of a cation-transporting ATPase of Plasmodium falciparum. Mol Biochem Parasitol 1996; 78:1–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Krishna S, Woodrow C, Webb R et al. Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) belonging to a subclass unique to apicomplexan organisms. J Biol Chem 2001; 276:10782–10787.PubMedCrossRefGoogle Scholar
  30. 30.
    Haynes WJ, Vaillant B, Preston RR et al. The cloning by complementation of the pawn-A gene in Paramecium. Genetics 1998; 149:947–957.PubMedGoogle Scholar
  31. 31.
    Furuichi T, Cunningham KW, Muto S. A putative two pore channel AtTCP1 mediate Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 2001; 42:900–905.PubMedCrossRefGoogle Scholar
  32. 32.
    Berridge MJ. Inositol triphosphate and calcium signalling. Nature 1993; 361:315–325.PubMedCrossRefGoogle Scholar
  33. 33.
    Guse AH. Cyclic ADP-ribose: A novel Ca2+-mobilising second messenger. Cell Signal 1999; 11:309–316.PubMedCrossRefGoogle Scholar
  34. 34.
    Berridge MJ. Capacitive calcium entry. Biochem J 1995; 312:1–11.PubMedGoogle Scholar
  35. 35.
    Chini EN, De Toledo FGS. Nicotinic acid adenine dinucleotide phosphate: A new intracellular second messenger? Amer J Physiol 2002; 282:C1191–1198.Google Scholar
  36. 36.
    Churchill GC, Okada Y, Thomas JM et al. NAADP mobilizes Ca2+ from reserve granules, lysosome-related stores, in sea urchin eggs. Cell 2002; 111:703–708.PubMedCrossRefGoogle Scholar
  37. 37.
    Lovett JL, Marchesini N, Moreno SN et al. Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from IP3 / ryanodine sensitive stores. J Biol Chem 2002; 277:25870–25876.PubMedCrossRefGoogle Scholar
  38. 38.
    Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 2002; 35:279–305.CrossRefGoogle Scholar
  39. 39.
    Toyoshima C, Inesi G. Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 2004; 73:269–292.PubMedCrossRefGoogle Scholar
  40. 40.
    Toyoshima C, Nakasako M, Nomura H et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 2000; 405:647–655.PubMedCrossRefGoogle Scholar
  41. 41.
    Toyoshima C, Mizutani T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 2004; 430:529–535.PubMedCrossRefGoogle Scholar
  42. 42.
    Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 2002; 418:605–611.PubMedCrossRefGoogle Scholar
  43. 43.
    Kimura M, Yamaguchi Y, Takada S et al. Cloning of a Ca2+-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca2+-ATPases. J Cell Sci 1993; 104:1129–1136.PubMedGoogle Scholar
  44. 44.
    Thastrup O, Cullen PJ, Drobak BK et al. Thapsigargin, a tumor promotor, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 1990; 87:2766–2470.CrossRefGoogle Scholar
  45. 45.
    Sagara Y, Inesi G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 1991; 266:13503–13506.PubMedGoogle Scholar
  46. 46.
    Sagara Y, Wade JB, Inesi G. A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J Biol Chem 1992; 267:1286–1292.PubMedGoogle Scholar
  47. 47.
    Carruthers VB, Moreno SNJ, Sibley LD. Ethanol and acetaldehyde elevate intracellular [Ca2+] calcium and stimulate microneme discharge in Toxoplasma gondii. Biochem J 1999; 342:379–386.PubMedCrossRefGoogle Scholar
  48. 48.
    Varotti FP, Beraldo FH, Gazarini ML et al. Plasmodium falciparum malaria parasites display a THG-sensitive Ca2+ pool. Cell Calcium 2003; 33:137–144.PubMedCrossRefGoogle Scholar
  49. 49.
    O’Neill PM. Medicinal chemistry: A worthy adversary for malaria. Nature 2004; 430:838–839.PubMedCrossRefGoogle Scholar
  50. 50.
    Haynes RK, Krishna S. Artemisinins: Activities and actions. Microb Infect 2004; 6:1339–1346.CrossRefGoogle Scholar
  51. 51.
    Uhlemann AC, Cameron A, Eckstein-Ludwig U et al. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Molec Biol 2005; 12:628–629.CrossRefGoogle Scholar
  52. 52.
    Berens RL, Krug EC, Nash PB et al. Selection and characterization of Toxoplasma gondii mutants resistant to artemisinin. J Infect Dis 1998; 177:1128–1131.PubMedCrossRefGoogle Scholar
  53. 53.
    Sarciron ME, Saccharin C, Petavy AF et al. Effects of artesunate, dihydroartemisinin, and an artesunate-dihydroartemisinin combination against Toxoplasma gondii. Am J Trop Med Hyg 2000; 62:73–76.PubMedGoogle Scholar
  54. 54.
    Ngo T, Duraisingh M, Reed MB et al. Analysis of PFCRT, PFMDR1, DHFR, and DHPS mutations and drug sensitivities in Plasmodium falciparum isolates from patietns in Vietnam before and after treatment with artemisinin. Am J Trop Med Hyg 2003; 68:350–356.PubMedGoogle Scholar
  55. 55.
    Roos DS, Donald RGK, Morrissette NS et al. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 1994; 45:28–61.Google Scholar
  56. 56.
    Meisner M, Brecht S, Bujard H et al. Modulation of myosin A expression by a newly established tetracydine repressor based inducible system in Toxoplasma gondii. Nuc Acids Res 2001; 29:E115.CrossRefGoogle Scholar
  57. 57.
    Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1999; 1:225–236.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen XM, O’Hara SP, Huang BQ et al. Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infect Immun 2004; 72:6806–6816.PubMedCrossRefGoogle Scholar
  59. 59.
    Gantt S, Persson C, Rose K et al. Antibodies against thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo. Infect Immun 2000; 68:3667–3673.PubMedCrossRefGoogle Scholar
  60. 60.
    Ward GE, Fujioka H, Aikawa M et al. Staurosporine inhibits invasion of erythrocytes by malarial merozoites. Exper Parasitol 1994; 79:480–487.CrossRefGoogle Scholar
  61. 61.
    Kieschnick H, Wakefield T, Narducci CA et al. Toxoplasma gondii attachment to host cells is regulated by a calmodulin-like domain protein kinase. J Biol Chem 2001; 276:12369–12377.PubMedCrossRefGoogle Scholar
  62. 62.
    Wiersma HI, Galuska SE, Tomley FM et al. A role for coccidian cGMP-dependent protein kinase in motility and invasion. Intl J Parasit 2004; 34:369–380.CrossRefGoogle Scholar
  63. 63.
    Fang J, Marchesini N, Moreno SNJ. A Toxoplasma gondii phosphoinositde phospholipase C (TgPI-PLC) with high affinity for phosphatidylinositol. Biochem J 2006; 394:417–425.PubMedCrossRefGoogle Scholar
  64. 64.
    Chini EN, Nagamune K, Wetzel DM et al. Evidence that the cADPR signaling pathway controls calcium-mediated secretion in Toxoplasma gondii. Biochem J 2005; 389:269–277.PubMedCrossRefGoogle Scholar
  65. 65.
    Sibley LD. Invasion strategies of intracellular parasites. Science 2004; 304:248–253.PubMedCrossRefGoogle Scholar
  66. 66.
    Lovett JL, Sibley LD. Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 2003; 116:3009–3016.PubMedCrossRefGoogle Scholar
  67. 67.
    Wetzel DM, Chen LA, Ruiz FA et al. Calcium-mediated protein secretion potentiates motility by Toxoplasma gondii. J Cell Sci 2004; 117:5739–5748.PubMedCrossRefGoogle Scholar
  68. 68.
    Vieira MCF, Moreno SNJ. Mobilization of intracellular calcium upon attachment of Toxoplasma gondii tachyzoites to human fibroblasts is required for invasion. Mol Biochem Parasitol 2000; 106:157–162.PubMedCrossRefGoogle Scholar
  69. 69.
    Endo T, Sethi KK, Piekarski G. Toxoplasma gondii: Calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp Parasitol 1982; 53:179–188.PubMedCrossRefGoogle Scholar
  70. 70.
    Moudy R, Manning TJ, Beckers CJ. The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J Biol Chem 2001; 276:41492–41501.PubMedCrossRefGoogle Scholar
  71. 71.
    Seeber F, Beuerle B, Schmidt HH. Cloning and functional expression of the calmodulin gene from Toxoplasma gondii. Mol Biochem Parasitol 1999; 99:295–299.PubMedCrossRefGoogle Scholar
  72. 72.
    Song HO, Ahn MH, Ryu JS et al. Influence of calcium ion on host cell invasion and intracellular replication by Toxoplasma gondii. Korean J Parasitol 2004; 42:185–193.PubMedCrossRefGoogle Scholar
  73. 73.
    Hu K, Johnson J, Florens L et al. Cytoskeletal components of an invasion machine—The apical complex of Toxoplasma gondii. PLos Path 2006; 2:121–138.Google Scholar
  74. 74.
    Robson KJH, Jennings MW. The structure of calmodulin gene in Plasmodium falciparum. Molec Biochem Parasitol 1991; 46:19–34.CrossRefGoogle Scholar
  75. 75.
    Matsomoto Y, G P, Scheibel LW et al. Role for calmodulin in Plasmodium falciparum: Implications for erythrocyte invasion by the merozoites. Eur J Cell Biol 1987; 45:36–43.Google Scholar
  76. 76.
    Salisbury JL. Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 1995; 7:39–45.PubMedCrossRefGoogle Scholar
  77. 77.
    Striepen B, Crawford MJ, Shaw MK et al. The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 2000; 151:1423–1434.PubMedCrossRefGoogle Scholar
  78. 78.
    Gonda K, Yoshida A, Oami K et al. Centrin is essential for the activity of the ciliary reversal-coupled voltage-gated Ca2+ channels. Biochem Biophys Res Commun 2004; 323:891–897.PubMedCrossRefGoogle Scholar
  79. 79.
    Molinier J, Ramos C, Fritsch O et al. CENTRIN2 modulates homologous recombination and nuclear excision repair in Arabidopsis. Plant Cell 2004; 16:1633–1643.PubMedCrossRefGoogle Scholar
  80. 80.
    Guerra C, Wada Y, Leick V et al. Cloning, localization, and axonemal function of Tetrahymena centrin. Mol Biol Cell 2003; 14:251–261.PubMedCrossRefGoogle Scholar
  81. 81.
    Cheng SH, Willmann MR, Chen HC et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 2002; 129:469–485.PubMedCrossRefGoogle Scholar
  82. 82.
    Dobrowolski JM, Carruthers VB, Sibley LD. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 1997; 26:163–173.PubMedCrossRefGoogle Scholar
  83. 83.
    Billker O, Tewari R, Franke-Fayard B et al. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 2004; 117:503–514.PubMedCrossRefGoogle Scholar
  84. 84.
    Siden-Kiamos I, Ecker A, Nyback S et al. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding and mosquito midgut invasion. Molec Micro 2006; 60:1355–1363.CrossRefGoogle Scholar
  85. 85.
    Ishino T, Orito Y, Chinzei Y et al. A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Molec Micro 2006; 59:1175–1184.CrossRefGoogle Scholar
  86. 86.
    Billker O, Lindo V, Panico M et al. Identification of xanthurenic acid as a putative inducer of malaria development in the mosquito. Nature (Lond.) 1998; 392:289–292.PubMedCrossRefGoogle Scholar
  87. 87.
    Martin SK, Jett M, Schneider I. Correlation of phosphoinositide hydrolysis with exflagellation in the malaria microgametocyte. J Parasitol 1994; 80:371–378.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Kisaburo Nagamune
    • 1
  • Silvia N. Moreno
    • 2
  • Eduardo N. Chini
    • 3
  • L. David Sibley
    • 1
  1. 1.Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Cellular Biology, and Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensUSA
  3. 3.Department of Anesthesiology, Mayo Medical SchoolMayo Clinic and FoundationRochesterUSA

Personalised recommendations