Erythrocyte Invasion by Plasmodium falciparum: Multiple Ligand-Receptor Interactions and Phenotypic Switching

  • Manoj T. Duraisingh
  • Tiffany DeSimone
  • Cameron Jennings
  • Philippe Refour
  • Chenwei Wu
Part of the Subcellular Biochemistry book series (SCBI, volume 47)


Infection with the protozoan parasite Plasmodium falciparum causes the most severe form of human malaria with over two million deaths per year. The clinical symptoms of malaria infection result from the rapid exponential expansion of parasites during the asexual erythrocytic phase of the P. falciparum life cycle. Invasion of erythrocytes by merozoites is a tightly controlled process that involves specific receptor-ligand interactions between host and parasite molecules. Virulence of P. falciparum parasites has been associated with increased multiplication rates and an ability to invade a greater range of host erythrocytes.1 Here we focus on our understanding of the molecular mechanisms underlying host cell selection and invasion of the host erythrocyte using parasite adhesive proteins. We will consider the parasite strategy of deploying multiple and variant adhesive ligands for successful invasion. An understanding of the molecular mechanism by which these proteins mediate invasion will facilitate their use in the rational design of vaccine and drug strategies.


Plasmodium Falciparum Parasite Line Plasmodium Knowlesi Invasion Pathway Tight Junction Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chotivanich K, Udomsangpetch R, Simpson JA et al. Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis 2000; 181(3):1206–1209.PubMedCrossRefGoogle Scholar
  2. 2.
    Gratzer WB, Dluzewski AR. The red blood cell and malaria parasite invasion. Semin Hematol 1993; 30(3):232–247.PubMedGoogle Scholar
  3. 3.
    Dvorak JA, Miller LH, Whitehouse WC et al. Invasion of erythrocytes by malaria merozoites. Science 1975; 187:748–750.PubMedCrossRefGoogle Scholar
  4. 4.
    Miller LH, Aikawa M, Johnson JG et al. Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J Exp Med 1979; 149:172–184.PubMedCrossRefGoogle Scholar
  5. 5.
    Holder AA, Freeman RR, Uni S et al. Isolation of a Plasmodium falciparum rhoptry protein. Mol Biochem Parasitol 1985; 14:293–303.PubMedCrossRefGoogle Scholar
  6. 6.
    Howard RF. The lower-molecular-weight protein complex (RI) of the Plasmodium falciparum rhoptries lacks the glycolytic enzyme aldolase. Mol Biochem Parasitol 1990; 42:235–240.PubMedCrossRefGoogle Scholar
  7. 7.
    Carruthers VB, Sibley LD. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 1999; 31(2):421–428.PubMedCrossRefGoogle Scholar
  8. 8.
    Goel VK, Li X, Chen H et al. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc Natl Acad Sci USA 2003; 100(9):5164–5169.PubMedCrossRefGoogle Scholar
  9. 9.
    Camus D, Hadley TJ. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 1985; 230:553–556.PubMedCrossRefGoogle Scholar
  10. 10.
    Sim BKL, Chitnis CE, Wasniowska K et al. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 1994; 264:1941–1944.PubMedCrossRefGoogle Scholar
  11. 11.
    Adams JH, Hudson DE, Torii M et al. The duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 1990; 63(1):141–153.PubMedCrossRefGoogle Scholar
  12. 12.
    Fang X, Kaslow DC, Adams JH et al. Cloning of the Plasmodium vivax Duffy receptor. Mol Biochem Parasitol 1991; 44:125–132.PubMedCrossRefGoogle Scholar
  13. 13.
    Peterson DS, Wellems TE. EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem Parasitol 2000; 105(1):105–113.PubMedCrossRefGoogle Scholar
  14. 14.
    Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419(6906):498–511.PubMedCrossRefGoogle Scholar
  15. 15.
    Mayer DC, Kaneko O, Hudson-Taylor DE et al. Characterization of a Plasmodium falciparum erythrocyte-binding protein paralogous to EBA-175. Proc Natl Acad Sci USA 2001; 98(9):5222–5227.PubMedCrossRefGoogle Scholar
  16. 16.
    Adams JH, Blair PL, Kaneko O et al. An expanding ebl family of Plasmodium falciparum. Trends Parasitol 2001; 17(6):297–299.PubMedCrossRefGoogle Scholar
  17. 17.
    Singh AP, Ozwara H, Kocken CH et al. Targeted deletion of Plasmodium knowlesi Duffy binding protein confirms its role in junction formation during invasion. Mol Microbiol 2005; 55(6):1925–1934.PubMedCrossRefGoogle Scholar
  18. 18.
    Singh SK, Hora R, Belrhali H et al. Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 2006; 439(7077):741–744.PubMedCrossRefGoogle Scholar
  19. 19.
    Tolia NH, Enemark EJ, Sim BK et al. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 2005; 122(2):183–193.PubMedCrossRefGoogle Scholar
  20. 20.
    Baum J, Richard D, Healer J et al. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 2006; 281(8):5197–5208.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller LH, Aikawa M, Johnson JG et al. Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J Exp Med 1979; 149(1):172–184.PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson JK, Triglia T, Reed MB et al. A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes. Mol Microbiol 2001; 41(1):47–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Narum DL, Fuhrmann SR, Luu T et al. A novel Plasmodium falciparum erythrocyte binding protein-2 (EBP2/BAEBL) involved in erythrocyte receptor binding. Mol Biochem Parasitol 2002; 119(2):159–168.PubMedCrossRefGoogle Scholar
  24. 24.
    Maier AG, Duraisingh MT, Reeder JC et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 2003; 9(1):87–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Triglia T, Thompson JK, Cowman AF. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 2001; 116(1):55–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Galinski MR, Medina CC, Ingravallo P et al. A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 1992; 69:1213–1226.PubMedCrossRefGoogle Scholar
  27. 27.
    Ogun SA, Holder AA. A high molecular mass Plasmodium yoelii rhoptry protein binds to erythrocytes. Mol Biochem Parasitol 1996; 76:321–324.PubMedCrossRefGoogle Scholar
  28. 28.
    Holder AA, Freeman RR. Immunization against blood-stage rodent malaria using purified parasite antigens. Nature 1981; 294:361–364.PubMedCrossRefGoogle Scholar
  29. 29.
    Taylor HM, Triglia T, Thompson J et al. Plasmodium falciparum homologue of the genes for Plasmodium vivax and Plasmodium yoelii adhesive proteins, which is transcribed but not translated. Infect Immun 2001; 69(6):3635–3645.PubMedCrossRefGoogle Scholar
  30. 30.
    Rayner JC, Vargas-Serrato E, Huber CS et al. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med 2001; 194(11):1571–1581.PubMedCrossRefGoogle Scholar
  31. 31.
    Triglia T, Duraisingh MT, Good RT et al. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol Microbiol 2005; 55(1):162–174.PubMedCrossRefGoogle Scholar
  32. 32.
    Triglia T, Thompson J, Caruana SR et al. Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun. 2001; 69(2):1084–1092.PubMedCrossRefGoogle Scholar
  33. 33.
    Rayner JC, Galinski MR, Ingravallo P et al. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA 2000; 97(17):9648–9653.PubMedCrossRefGoogle Scholar
  34. 34.
    Duraisingh MT, Triglia T, Ralph SA et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 2003; 22(5):1047–1057.PubMedCrossRefGoogle Scholar
  35. 35.
    Dolan SA, Proctor JL, Ailing DW et al. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol 1994; 64:55–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Dolan SA, Miller LH, Wellems TE. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J Clin Invest 1990; 86(2):618–624.PubMedCrossRefGoogle Scholar
  37. 37.
    Mitchell GH, Hadley TJ, McGinniss MH et al. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: Evidence for receptor heterogeneity and two receptors. Blood 1986; 67(5):1519–1521.PubMedGoogle Scholar
  38. 38.
    Okoyeh JN, Pillai CR, Chitnis CE. Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A. Infect Immun 1999; 67(11):5784–5791.PubMedGoogle Scholar
  39. 39.
    Baum J, Pinder M, Conway DJ. Erythrocyte invasion phenotypes of Plasmodium falciparum in The Gambia. Infect Immun 2003; 71(4):1856–1863.PubMedCrossRefGoogle Scholar
  40. 40.
    Lobo CA, de Frazao K, Rodriguez M et al. Invasion profiles of Brazilian field isolates of Plasmodium falciparum: Phenotypic and genotypic analyses. Infect Immun 2004; 72(10):5886–5891.PubMedCrossRefGoogle Scholar
  41. 41.
    Mayer DC, Jiang L, Achur RN et al. The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL. Proc Natl Acad Sci USA 2006; 103(7):2358–2362.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayer DC, Mu JB, Kaneko O et al. Polymorphism in the Plasmodium falciparum erythrocyte-binding ligand JESEBL/EBA-181 alters its receptor specificity. Proc Natl Acad Sci USA 2004; 101(8):2518–2523.PubMedCrossRefGoogle Scholar
  43. 43.
    Narum DL, Haynes JD, Fuhrmann S et al. Antibodies against the Plasmodium falciparum receptor binding domain of EBA-175 block invasion pathways that do not involve sialic acids. Infect Immun 2000; 68(4):1964–1966.PubMedCrossRefGoogle Scholar
  44. 44.
    Pandey KC, Singh S, Pattnaik P et al. Bacterially expressed and refolded receptor binding domain of Plasmodium falciparum EBA-175 elicits invasion inhibitory antibodies. Mol Biochem Parasitol 2002; 123(1):23–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Reed MB, Caruana SR, Batchelor AH et al. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc Natl Acad Sci USA 2000; 97(13):7509–7514.PubMedCrossRefGoogle Scholar
  46. 46.
    Duraisingh MT, Maier AG, Triglia T et al. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and-independent pathways. Proc Natl Acad Sci USA 2003; 100(8):4796–4801.PubMedCrossRefGoogle Scholar
  47. 47.
    Stubbs J, Simpson KM, Triglia T et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005; 309(5739):1384–1387.PubMedCrossRefGoogle Scholar
  48. 48.
    Gaur D, Furuya T, Mu J et al. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway. Mol Biochem Parasitol 2006; 145(2):205–215.PubMedCrossRefGoogle Scholar
  49. 49.
    Preiser PR, Jarra W, Capiod T et al. A rhoptry-protein-associated mechanism of clonal phenotypic variation in rodent malaria. Nature 1999; 398(6728):618–622.PubMedCrossRefGoogle Scholar
  50. 50.
    Baum J, Maier AG, Good RT et al. Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions. PLoS Pathog 2005; 1(4):e37.PubMedCrossRefGoogle Scholar
  51. 51.
    Kimura E, Mattei D, Mana di Santi S et al. Genetic diversity in the major merozoite surface antigen of Plasmodium falciparum: High prevalence of a third polymorphic form detected in strains derived from malaria patients. Gene 1990; 91(1):57–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Newbold CI. Antigenic variation in Plasmodium falciparum: Mechanisms and consequences. Curr Opin Microbiol 1999; 2:420–425.PubMedCrossRefGoogle Scholar
  53. 53.
    Patel SS, Mehlotra RK, Kastens W et al. The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood 2001; 98(12):3489–3491.PubMedCrossRefGoogle Scholar
  54. 54.
    Barnwell J and Galinski M. Invasion of vertebrate cells: Erythrocytes. In: Sherman I, ed. Malaria: Parasite biology, pathogenesis, and protection. Washington: ASM Press, 1998:93.Google Scholar
  55. 55.
    Mourant AE, Kopec AC and Domaniewska-Sobczak K. The distribution of human blood groups and other polymorphisms. 2. London: Oxford university Press, 1976.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Manoj T. Duraisingh
    • 1
  • Tiffany DeSimone
    • 1
  • Cameron Jennings
    • 1
  • Philippe Refour
    • 1
  • Chenwei Wu
    • 1
  1. 1.Department of Immunology and Infectious DiseasesHarvard School of Public HealthBostonUSA

Personalised recommendations