Intestinal Invasion by Entamoeba histolytica

  • Shahram Solaymani-Mohammadi
  • William A. PetriJr.
Part of the Subcellular Biochemistry book series (SCBI, volume 47)


Entamoeba histolytica is a protozoan parasite that infects humans and causes the disease amebiasis. The spectrum of intestinal amebiasis varies from colonization without symptoms to fulminating diarrhea and intestinal hemorrhage. The dissemination of the parasite via invasion of the intestinal epithelium allows the trophozoites to invade extra-intestinal sites, most usually the liver. Without treatment, the amebic liver abscesses may continue to enlarge and, if ruptured, cause mortality owing to acute peritonitis. Cases of clinical amebiasis have been reported worldwide, in particular in under-developed and developing counties in Africa, South America, the Indian subcontinent, and Mexico. It has been estimated that approximately 50 million individuals are infected with E. histolytica and about 100,000 people die of invasive amebiasis annually, making it the third leading parasitic cause of death, after malaria and schistosomiasis.1 The host-parasite interaction in human amebiasis is very complicated, and different aspects of innate immunity of the human host against the parasite still are unknown. New insights into the pathogenesis of amebic infections have come from development of in vitro and in vivo models of disease, new molecular and genetic approaches, the identification of key factors in E. histolytica pathogenesis, recognition of the mechanisms of evasion from the host’s harmful responses, and detection of crucial elements of the host immune responses both innate and acquired. In this chapter, we discuss the innate immunity of human hosts against the parasite and the most important parasite virulence factors and survival strategies that are implicated in pathogenesis.


Cysteine Proteinase Entamoeba Histolytica Amebic Liver Abscess Intestinal Amebiasis Histolytica Trophozoite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organization: Amebiasis. WHO Weekly Epidemiological Records 1997; 72:97–100.Google Scholar
  2. 2.
    Lamont JT. Mucus: The front line of intestinal mucosal defense. Ann NY Acad Sci 1992; 664:190–201.PubMedCrossRefGoogle Scholar
  3. 3.
    Perez-Vilar J, Hill RL. The structure and assembly of secreted mucins. J Biol Chem 1999; 274(45):31751–31754.PubMedCrossRefGoogle Scholar
  4. 4.
    Moncada DM, Kammanadiminti SJ, Chadee K. Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol 2003; 19(7):305–311.PubMedCrossRefGoogle Scholar
  5. 5.
    Forstner JF, Oliver MG, Sylvester FA. Production, structure, and biologic relevance of gastrointestinal mucins. In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guerrant RL, eds. Infections of the gastrointestinal tract. New York: Raven Press, 1995:71–88.Google Scholar
  6. 6.
    Deplancke B, Gaskins HR. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am J Clinical Nutrition 2001; 73(6):131S–141.Google Scholar
  7. 7.
    Chadee K, Petri Jr WA, Innes DJ et al. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest 1987; 80(5):1245–1254.PubMedCrossRefGoogle Scholar
  8. 8.
    Chadee K, Meerovitch E. Entamoeba histolytica: Early progressive pathology in the cecum of the gerbil (Meriones unguiculatus). Am J Trop Med Hyg 1985; 34:283–291.PubMedGoogle Scholar
  9. 9.
    Belley A, Keller K, Gottke M et al. Intestinal mucins in colonization and host defense against pathogens. Am J Trop Med Hyg 1999; 60:10–15.PubMedGoogle Scholar
  10. 10.
    Ravdin JI. Immunobiology of human infection by Entamoeba histolytica. Pathol Immunopathol Res 1989; 8(3–4):179–205.PubMedCrossRefGoogle Scholar
  11. 11.
    Belley A, Keller K, Grove J et al. Interaction of LS174T human colon cancer cell mucins with Entamoeba histolytica: An in vitro model for colonic disease. Gastroenterology 1996; 111(6):1484–1492.PubMedCrossRefGoogle Scholar
  12. 12.
    Stenson WF, Zhang Z, Riehl T et al. Amebic infection in the human colon induces cyclooxygenase-2. Infect Immun 2001; 69(5):3382–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Huldt G, Davies P, Allison AC et al. Interactions between Entamoeba histolytica and complement. Nature 1979; 277(5693):214–216.PubMedCrossRefGoogle Scholar
  14. 14.
    Meri S, Richaud G, Linder E. Complement activation by antigenic fractions of Entamoeba histolytica. Parasite Immunol 1985; 7(2):153–164.PubMedCrossRefGoogle Scholar
  15. 15.
    Calderon J, Schreiber RD. Activation of the alternative and classical complement pathways by Entamoeba histolytica. Infect Immun 1985; 50:560–565.PubMedGoogle Scholar
  16. 16.
    Munoz LE, Salazar OG. Complement activation in patients with amebic liver abscess. J Hepatol 1987; 5(1):30–36.PubMedCrossRefGoogle Scholar
  17. 17.
    Reed SL, Keene WE, McKerrow JH et al. Cleavage of C3 by a neutral cysteine proteinase of Entamoeba histolytica. J Immunol 1989; 143:189–195.PubMedGoogle Scholar
  18. 18.
    Walderich B, Weber A, Knobloch J. Sensitivity of Entamoeba histolytica and Entamoeba dispar patient isolates to human complement. Parasite Immunol 1997; 19(6):265–271.PubMedCrossRefGoogle Scholar
  19. 19.
    Reed SL, Curd JG, Gigli I et al. Activation of complement by pathogenic and nonpathogenic Entamoeba histolytica. J Immunol 1986; 136(6):2265–2270.PubMedGoogle Scholar
  20. 20.
    Capin R, Capin NR, Carmona M et al. Effect of complement depletion on the induction of amebic liver abscess in the hamster. Arch Invest Med (Mex) 1980; 11(1 Suppl):173–180.Google Scholar
  21. 21.
    Braga LL, Ninomiya H, McCoy JJ et al. Inhibition of the complement membrane attack complex by the galactose-specific adhesion of Entamoeba histolytica. J Clin Invest 1992; 90(3):1131–1137.PubMedCrossRefGoogle Scholar
  22. 22.
    Mann BJ. Structure and function of the Entamoeba histolytica Gal/GalNAc lectin. Int Rev Cytol 2002; 216:59–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Petri Jr WA, Chapman MD, Snodgrass T et al. Subunit structure of the galactose and N-acetyl-D-galactosamine-inhibitable adherence lectin of Entamoeba histolytica. J Biol Chem 1989; 264(5):3007–3012.PubMedGoogle Scholar
  24. 24.
    Cheng XJ, Hughes MA, Huston CD et al. Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs. Infect Immun 2001; 69(9):5892–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Stanley Jr SL, Huizenga H, Li E. Isolation and partial characterization of a surface glycoconjugate of Entamoeba histolytica. Mol Biochem Parasitol 1992; 50(1):127–138.PubMedCrossRefGoogle Scholar
  26. 26.
    Dodson JM, Lenkowski Jr PW, Eubanks AC et al. Infection and immunity mediated by the carbohydrate recognition domain of the Entamoeba histolytica Gal/GalNAc lectin. J Infect Dis 1999; 179(2):460–466.PubMedCrossRefGoogle Scholar
  27. 27.
    McCoy JJ, Weaver AM, Petri Jr WA. Use of monoclonal anti-light subunit antibodies to study the structure and function of the Entamoeba histolytica Gal/GalNAc adherence lectin. Glycoconj J 1994; 11(5):432–436.PubMedCrossRefGoogle Scholar
  28. 28.
    Ravdin JI, John JE, Johnston LI et al. Adherence of Entamoeba histolytica trophozoites to rat and human colonic mucosa. Infect Immun 1985; 48(2):292–297.PubMedGoogle Scholar
  29. 29.
    Bracha R, Mirelman D. Adherence and ingestion of Escherichia coli serotype 055 by trophozoites of Entamoeba histolytica. Infect Immun 1983; 40(3):882–887.PubMedGoogle Scholar
  30. 30.
    Petri Jr WA, Haque R, Mann BJ. The bittersweet interface of parasite and host: Lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annu Rev Microbiol 2002; 56:39–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Petri Jr WA, Joyce MP, Broman J et al. Recognition of the galactose-or N-acetylgalactosamine-binding lectin of Entamoeba histolytica by human immune sera. Infect Immun 1987; 55(10):2327–2331.PubMedGoogle Scholar
  32. 32.
    Saffer LD, Petri Jr WA. Role of the galactose lectin of Entamoeba histolytica in adherence-dependent killing of mammalian cells. Infect Immun 1991; 59(12):4681–4683.PubMedGoogle Scholar
  33. 33.
    Mann BJ, Lockhart LA. Molecular analysis of the Gal/GalNAc adhesin of Entamoeba histolytica. J Eukaryot Microbiol 1998; 45(2):13S–16S.PubMedCrossRefGoogle Scholar
  34. 34.
    Tschopp J, Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol 1990; 8:279–302.PubMedCrossRefGoogle Scholar
  35. 35.
    Lynch EC, Rosenberg IM, Gitler C. An ion-channel forming protein produced by Entamoeba histolytica. EMBO J 1982; 1(7):801–804.PubMedGoogle Scholar
  36. 36.
    Rosenberg I, Gitler C. Subcellular fractionation of amoebapore and plasma membrane components of Entamoeba histolytica using self-generating Percoll gradients. Mol Biochem Parasitol 1985; 14(2):231–248.PubMedCrossRefGoogle Scholar
  37. 37.
    Leippe M, Tannich E, Nickel R et al. Primary and secondary structure of the pore-forming peptide of pathogenic Entamoeba histolytica. EMBO J 1992; 11(10):3501–3506.PubMedGoogle Scholar
  38. 38.
    Leippe M, Andra J, Nickel R et al. Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: Isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. Mol Microbiol 1994; 14(5):895–904.PubMedCrossRefGoogle Scholar
  39. 39.
    Loftus B, Anderson I, Davis R et al. The genome of the protest parasite Entamoeba histolytica. Nature 2005; 433(7028):865–868.PubMedCrossRefGoogle Scholar
  40. 40.
    Leippe M. Amoebapores. Parasitol Today 1997; 13(5):178–183.PubMedCrossRefGoogle Scholar
  41. 41.
    Leippe M, Andra J, Nickel R et al. Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: Isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. Mol Microbiol 1994; 14(5):895–904.PubMedCrossRefGoogle Scholar
  42. 42.
    Leippe M, Bahr E, Tannich E et al. Comparison of pore-forming peptides from pathogenic and nonpathogenic Entamoeba histolytica. Mol Biochem Parasitol 1993; 59(1):101–109.PubMedCrossRefGoogle Scholar
  43. 43.
    Leippe M, Sievertsen HJ, Tannich E et al. Spontaneous release of cysteine proteinases but not of pore-forming peptides by viable Entamoeba histolytica. Parasitology 1995; 111 (Pt 5):569–574.PubMedCrossRefGoogle Scholar
  44. 44.
    Tannich E. Entamoeba histolytica and E. dispar: Comparison of molecules considered important for host tissue destruction. Trans R Soc Trop Med Hyg 1998; 92(6):593–596.PubMedCrossRefGoogle Scholar
  45. 45.
    Berti PJ, Storer AC. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 1995; 246:273–283.PubMedCrossRefGoogle Scholar
  46. 46.
    Sloane BF, Rozhin J, Hatfleld JS et al. Plasma membrane-associated cysteine proteinases in human and animal tumors. Exp Cell Biol 1987; 55:209–224.PubMedCrossRefGoogle Scholar
  47. 47.
    Mly AS, Matuschewski K. A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J Exp Med 2005; 202(2):225–30.CrossRefGoogle Scholar
  48. 48.
    Scholze H, Schulte W. On the specificity of a cysteine proteinase from Entamoeba histolytica. Biomed Biochim Acta 1988; 47(2):115–123.PubMedGoogle Scholar
  49. 49.
    Luaces AL, Barrett AJ. Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica. Biochem J 1988; 250(3):903–909.PubMedGoogle Scholar
  50. 50.
    Keene WE, Hidalgo ME, Orozco E et al. Entamoeba histolytica: Correlation of the cytopathic effect of virulent trophozoites with secretion of a cysteine proteinase. Exp Parasitol 1990; 71(2):199–206.PubMedCrossRefGoogle Scholar
  51. 51.
    Reed SL, Keene WE, McKerrow JH. Thiol proteinase expression and pathogenicity of Entamoeba histolytica. J Clin Microbiol 1989; 27(12):2772–2777.PubMedGoogle Scholar
  52. 52.
    Jacobs T, Bruchhaus I, Dandekar T et al. Isolation and molecular characterization of a surface-bound proteinase of Entamoeba histolytica. Mol Microbiol 1998; 27:269–276.PubMedCrossRefGoogle Scholar
  53. 53.
    Bruchhaus I, Jacobs T, Leippe M et al. Entamoeba histolytica and Entamoeba dispar: Differences in numbers and expression of cysteine proteinase genes. Mol Microbiol 1996; 22(2):255–263.PubMedCrossRefGoogle Scholar
  54. 54.
    Willhoeft U, Hamann L, Tannich E. A DNA sequence corresponding to the gene encoding cysteine proteinase 5 in Entamoeba histolytica is present and positionally conserved but highly degenerated in Entamoeba dispar. Infect Immun 1999; 67:5925–5929.PubMedGoogle Scholar
  55. 55.
    Forney JR, Yang S, Healy MC. Protease activity associated with excystation of Cryptosporidium parvum oocysts. J Parasitology 1996; 82(6):889–892.CrossRefGoogle Scholar
  56. 56.
    Keene WE, Petitt MG, Allen S et al. The major neutral proteinase of Entamoeba histolytica. J Exp Med 1986; 163(3):536–549.PubMedCrossRefGoogle Scholar
  57. 57.
    Reed S, Bouvier J, Pollack AS et al. Cloning of a virulence factor of Entamoeba histolytica: Pathogenic strains possess a unique cysteine proteinase gene. J Clin Invest 1993; 91(4):1532–1540.PubMedCrossRefGoogle Scholar
  58. 58.
    Li E, Yang WG, Zhang T et al. Interaction of laminin with Entamoeba histolytica cysteine pro-teinases and its effect on amebic pathogenesis. Infect Immun 1995; 63(10):4150–4153.PubMedGoogle Scholar
  59. 59.
    Que X, Reed SL. Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev 2000; 13(2):196–206.PubMedCrossRefGoogle Scholar
  60. 60.
    Moncada D, Keller K, Ankri S et al. Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation. Gastroenterology 2006; 130(3):721–30.PubMedCrossRefGoogle Scholar
  61. 61.
    Meza I. Extracellular matrix-induced signaling in Entamoeba histolytica: Its role in invasiveness. Parasitol Today 2000; 16(1):23–28.PubMedCrossRefGoogle Scholar
  62. 62.
    Carbajal ME, Manning-Cela R, Pina A et al. Fibronectin-induced intracellular calcium rise in Entamoeba histolytica trophozoites: Effect on adhesion and the actin cytoskeleton. Exp Parasitol 1996; 82(1):11–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Santiago A, Carbajal ME, Benitez-King G et al. Entamoeba histolytica: PKC transduction pathway activation in the trophozoite-flbronectin interaction. Exp Parasitol 1994; 79(3):436–444.PubMedCrossRefGoogle Scholar
  64. 64.
    Munoz ML, Lamoyi E, Leon G et al. Antigens in electron-dense granules from Entamoeba histolytica as possible markers for pathogenicity. J Clin Microbiol 1990; 28(11):2418–2424.PubMedGoogle Scholar
  65. 65.
    Perez E, Munoz ML, Ortega A. Entamoeba histolytica: Involvement of pp125FAK in collagen-induced signal transduction. Exp Parasitol 1996; 82(2):164–170.PubMedCrossRefGoogle Scholar
  66. 66.
    de Lourdes Munoz M, Das P, Tovar R. Entamoeba histolytica trophozoites activated by collagen type I and Ca2+ have a structured cytoskeleton during collagenase secretion. Cell Motil Cytoskeleton 2001; 50(1):45–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Debnath A, Akbar MA, Mazumder A et al. Entamoeba histolytica: Characterization of human collagen type I and Ca2+ activated differentially expressed genes. Exp Parasitol 2005; 110(3):214–219.PubMedCrossRefGoogle Scholar
  68. 68.
    Ghosh SK, Samuelson J. Involvement of p21racA, phosphoinositide 3-kinase, and vacuolar ATPase in phagocytosis of bacteria and erythrocytes by Entamoeba histolytica: Suggestive evidence for coincidental evolution of amebic invasiveness. Infect Immun 1997; 65(10):4243–4249.PubMedGoogle Scholar
  69. 69.
    Aguilar-Rojas A, Almaraz-Barrera Mde J, Krzeminski M et al. Entamoeba histolytica: Inhibition of cellular functions by overexpression of EhGEF1, a novel Rho/Rac guaninenudeotide exchange factor. Exp Parasitol 2005; 109(3):150–162.PubMedCrossRefGoogle Scholar
  70. 70.
    Lohia A, Samuelson J. Molecular cloning of a rho family gene of Entamoeba histolytica. Mol Biochem Parasitol 1993; 58(1):177–180.PubMedCrossRefGoogle Scholar
  71. 71.
    Beck DL, Boettner DR, Dragulev B et al. Identification and gene expression analysis of a large family of transmembrane kinases related to the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryot Cell 2005; 4(4):722–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Kelsall BL, Ravdin JI. Degradation of human IgA by Entamoeba histolytica. J Infect Dis 1993; 168(5):1319–1322.PubMedGoogle Scholar
  73. 73.
    Espinosa-Cantellano M, Martinez-Palomo A. Entamoeba histolytica: Mechanism of surface receptor capping. Exp Parasitol 1994; 79(3):424–435.PubMedCrossRefGoogle Scholar
  74. 74.
    Arhets P, Gounon P, Sansonetti P et al. Myosin II is involved in capping and uroid formation in the human pathogen Entamoeba histolytica. Infect Immun 1995; 63(11):4358–4367.PubMedGoogle Scholar
  75. 75.
    Zambrano-Villa S, Rosales-Borjas D, Carrero JC et al. How protozoan parasites evade the immune response. Trends Parasitol 2002; (6):272–278.CrossRefGoogle Scholar
  76. 76.
    Ortiz-Ortiz L, Zamacona G, Sepulveda B et al. Cell-mediated immunity in patients with amebic abscess of the liver. Clin Immunol Immunopathol 1975; 4(1):127–134.PubMedCrossRefGoogle Scholar
  77. 77.
    Ghosh PK, Castellanos-Barba C, Ortiz-Ortiz L. Intestinal amebiasis: Cyclic suppression of the immune response. Parasitol Res 1995; 81(6):475–480.PubMedCrossRefGoogle Scholar
  78. 78.
    Rico G, Diaz-Guerra O, Kretschmer RR. Cyclic nucleotide changes induced in human leukocytes by a product of axenically grown Entamoeba histolytica that inhibits human monocyte locomotion. Parasitol Res 1995; 81(2):158–162.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang W, Chadee K. Entamoeba histolytica suppresses gamma interferon-induced macrophage class II major histocompatibility complex Ia molecule and I-A beta mRNA expression by a prostaglan-din E2-dependent mechanism. Infect Immun 1995; 63(3):1089–1094.PubMedGoogle Scholar
  80. 80.
    Wang W, Keller K, Chadee K. Modulation of tumor necrosis factor production by macrophages in Entamoeba histolytica infection. Infect Immun 1992; 60(8):3169–3174.PubMedGoogle Scholar
  81. 81.
    Calderon J, Tovar R. Loss of susceptibility to complement lysis in Entamoeba histolytica HM1 by treatment with human serum. Immunology 1986; 58(3):467–471.PubMedGoogle Scholar
  82. 82.
    Houpt ER, Glembocki DJ, Obrig TG et al. The mouse model of amebic colitis reveals mouse strain susceptibility to infection and exacerbation of disease by CD4+ T cells. J Immunol 2002; 169(8):4496–503.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Shahram Solaymani-Mohammadi
    • 1
  • William A. PetriJr.
    • 2
  1. 1.Department of Medicine—Infectious DiseasesUniversity of VirginiaCharlottesvilleUSA
  2. 2.Division of Infectious Diseases and International HealthUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations