The Role of Host Cell Lysosomes in Trypanosoma cruzi Invasion

  • G. Adam Mott
  • Barbara A. Burleigh
Part of the Subcellular Biochemistry book series (SCBI, volume 47)


The cell-invasive, trypomastigote form of Trypanosoma cruzi exhibits a unique relationship with lysosomes in target host cells. In contrast to many intracellular pathogens that are adept at avoiding contact with lysosomes, T. cruzi requires transient residence within this acidic organelle for productive infection. The low pH environment of lysosomes facilitates parasite egress from the vacuole and delivery into the host cytosol, a critical step in the T. cruzi developmental program. Recent studies also suggest that early lysosome fusion with invading or recently internalized parasites is critical for cellular retention of parasites. To ensure targeting to host cell lysosomes, T. cruzi trypomastigotes exploit two distinct modes of invasion that rapidly converge in the cell. In this chapter, we summarize the recent progress and changing views regarding the role of host cell lysosomes in the T. cruzi infection process where our discussion is limited to invasion of nonprofessional phagocytic cells.


Host Cell Trypanosoma Cruzi Parasitophorous Vacuole Nonphagocytic Cell Host Cell Invasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prata A. Clinical and epidemiological aspects of Chagas’ disease. Lancet Infectious Diseases 2001; 1:92–100.PubMedCrossRefGoogle Scholar
  2. 2.
    Ley V, Robbins E, Nussenzweig Vet al. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J Exp Med 1990; 171(2):401–413.PubMedCrossRefGoogle Scholar
  3. 3.
    Andrews NW, Whitlow MB. Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Molecular and Biochemical Parasitology 1989; 33(3):249–256.PubMedCrossRefGoogle Scholar
  4. 4.
    Andrews NW, Abrams CK, Slatin SL et al. A T. cruzi-secreted protein immunologically related to the complement component C9: Evidence for membrane pore-forming activity at low pH. Cell 1990; 61(7):1277–1287.PubMedCrossRefGoogle Scholar
  5. 5.
    Vandekerckhove F, Schenkman S, Carvalho LPD et al. Substrate specificity of the Trypanosoma cruzi trans-sialidase. Glycobiology 1992; 2(6):541–548.PubMedCrossRefGoogle Scholar
  6. 6.
    Hall B, Webster P, Ma A et al. Desialylation of lysosomal membrane glycoproteins by Trypanosoma cruzi: A role for the surface neuraminidase in facilitating parasite entry into the host cell cytoplasm. J Exp Med 1992; 176(2):313–325.PubMedCrossRefGoogle Scholar
  7. 7.
    Rubin-de-Celis SSC, Uemura H, Yoshida N et al. Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cellular Microbiology 2006; 8(12):1888–1898.PubMedCrossRefGoogle Scholar
  8. 8.
    Lopez M, Huynh C, Andrade LOet al. Role for sialic acid in the formation of tight lysosome-derived vacuoles during Trypanosoma cruzi invasion. Molecular and Biochemical Parasitology 2002; 119(1):141–145.PubMedCrossRefGoogle Scholar
  9. 9.
    Andrade LO, Andrews NW. Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J Exp Med 2004; 200(9):1135–1143.PubMedCrossRefGoogle Scholar
  10. 10.
    Cossart P, Sansonetti PJ. Bacterial invasion: The paradigms of enteroinvasive pathogens. Science 2004; 304(5668):242–248.PubMedCrossRefGoogle Scholar
  11. 11.
    Tardieux I, Webster P, Ravesloot J et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 1992; 71(7):1117–1130.PubMedCrossRefGoogle Scholar
  12. 12.
    Schenkman S, Robbins ES, Nussenzweig V. Attachment of Trypanosoma cruzi to mammalian cells requires parasite energy, and invasion can be independent of the target cell cytoskeleton. Infect Immun 1991; 59(2):645–654.PubMedGoogle Scholar
  13. 13.
    Rodriguez A, Samoff E, Rioult M et al. Host cell invasion by trypanosomes requires lysosomes and microtubule/kinesin-mediated transport. J Cell Biol 1996; 134(2):349–362.PubMedCrossRefGoogle Scholar
  14. 14.
    Tyler KM, Luxton GWG, Applewhite DA et al. Responsive microtubule dynamics promote cell invasion by Trypanosoma cruzi. Cellular Microbiology 2005; 7(11):1579–1591.PubMedCrossRefGoogle Scholar
  15. 15.
    Andrade LO, Andrews NW. The trypanosoma cruzi-host-cell interplay: Location, invasion, retention. Nature Reviews Microbiology 2005; 3(10):819–823.PubMedCrossRefGoogle Scholar
  16. 16.
    Andrews NW, Lysosomes and the plasma membrane: Trypanosomes reveal a secret relationship. J Cell Biol 2002; 158(3):389–394.PubMedCrossRefGoogle Scholar
  17. 17.
    Schenkman S, Mortara R. HeLa cells extend and internalize pseudopodia during active invasion by Trypanosoma cruzi trypomastigotes. J Cell Sci 1992; 101(4):895–905.PubMedGoogle Scholar
  18. 18.
    Woolsey AM, Sunwoo L, Petersen CA et al. Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. J Cell Sci 2003; 116(17):3611–3622.PubMedCrossRefGoogle Scholar
  19. 19.
    Wilkowsky SE, Barbieri MA, Stahl PD et al. Regulation of trypanosoma cruzi invasion of nonphagocytic cells by the endocytically active GTPases dynamin, Rab5, and Rab7. Biochemical and Biophysical Research Communications 2002; 291(3):516–521.PubMedCrossRefGoogle Scholar
  20. 20.
    Bucci C, Thomsen P, Nicoziani P et al. Rab7: A Key to lysosome biogenesis. Mol Biol Cell 2000; 11(2):467–480.PubMedGoogle Scholar
  21. 21.
    Rodriguez A, Webster, Ortego J et al. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 1997; 137(1):93–104.PubMedCrossRefGoogle Scholar
  22. 22.
    Tardieux I, Nathanson M, Andrews N. Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients. J Exp Med 1994; 179(3):1017–1022.PubMedCrossRefGoogle Scholar
  23. 23.
    Burleigh BA, Andrews NW. Signaling and host cell invasion by Trypanosoma cruzi. Current Opinion in Microbiology 1998; 1(4):461–465.PubMedCrossRefGoogle Scholar
  24. 24.
    Scharfstein J, Schmitz V, Morandi V et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B2 receptors. J Exp Med 2000; 192(9):1289–1300.PubMedCrossRefGoogle Scholar
  25. 25.
    Dorta ML, Ferreira AT, Oshiro MEM et al. Ca2+ signal induced by Trypanosoma cruzi metacyclic trypomastigote surface molecules implicated in mammalian cell invasion. Molecular and Biochemical Parasitology 1995; 73(1–2):285–289.PubMedCrossRefGoogle Scholar
  26. 26.
    Rodriguez A, Rioult M, Ora A et al. A trypanosome-soluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 1995; 129(5):1263–1273.PubMedCrossRefGoogle Scholar
  27. 27.
    Rodriguez A, Martinez I, Chung A et al. cAMP Regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J Biol Chem 1999; 274(24):16754–16759.PubMedCrossRefGoogle Scholar
  28. 28.
    Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 2001; 106(2):157–169.PubMedCrossRefGoogle Scholar
  29. 29.
    Caler EV, Chakrabarti S, Fowler KT et al. The Exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 2001; 193(9):1097–1104.PubMedCrossRefGoogle Scholar
  30. 30.
    Li C, Ullrich B, Zhang JZet al. Ca2+-dependent and independent activities of neural and nonneural synaptotagmins. Nature 1995; 375(6532):594–599.PubMedCrossRefGoogle Scholar
  31. 31.
    Martinez I, Chakrabarti S, Hellevik Tet al. Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in Fibroblasts. J Cell Biol 2000; 148(6):1141–1150.PubMedCrossRefGoogle Scholar
  32. 32.
    Chakrabarti S, Kobayashi KS, Flavell RA et al. Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J Cell Biol 2003; 162(4):543–549.PubMedCrossRefGoogle Scholar
  33. 33.
    Roy D, Liston DR, Idone VJ et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 2004; 304(5676):1515–1518.PubMedCrossRefGoogle Scholar
  34. 34.
    Andrews NW. Membrane resealing: Synaptotagmin VII keeps running the show. Sci STKE 2005; 2005(282):19.CrossRefGoogle Scholar
  35. 35.
    Rao SK, Huynh C, Proux-Gillardeaux V et al. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J Biol Chem 2004; 279(19):20471–20479.PubMedCrossRefGoogle Scholar
  36. 36.
    Chakrabarti S, Andrade LO, Andrews NW. Trypanosoma cruzi invades synaptotagmin VII-deficient cells by a PI-3 kinase independent pathway. Molecular and Biochemical Parasitology 2005; 141(1):125–128.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilkowsky SE, Barbieri MA, Stahl P et al. Trypanosoma cruzi: Phosphatidylinositol 3-kinase and protein kinase B activation is associated with parasite invasion. Experimental Cell Research 2001; 264(2):211–218.PubMedCrossRefGoogle Scholar
  38. 38.
    Burleigh BA. Host cell signaling and trypanosoma cruzi invasion: Do all roads lead to lysosomes? Sci STKE 2005; 2005(293):pe36-.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen XM, Splinter PL, Tietz PS et al. Phosphatidylinositol 3-kinase and frabin mediate cryptosporidium parvum cellular invasion via activation of Cdc42. J Biol Chem 2004; 279(30):31671–31678.PubMedCrossRefGoogle Scholar
  40. 40.
    Forney JR, DeWald DB, Yang S et al. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during cryptosporidium parvum infection. Infect Immun 1999; 67(2):844–852.PubMedGoogle Scholar
  41. 41.
    Kim L, Denkers EY. Toxoplasma gondii triggers Gi-dependent PI 3-kinase signaling required for inhibition of host cell apoptosis. J Cell Sci 2006; 119(10):2119–2126.PubMedCrossRefGoogle Scholar
  42. 42.
    Dobbelaere DA, Kuenzi P. The strategies of the Theileria parasite: A new twist in host-pathogen interactions. Current Opinion in Immunology 2004; 16(4):524–530.PubMedCrossRefGoogle Scholar
  43. 43.
    Chuenkova MV, Furnari FB, Cavenee WK et al. Trypanosoma cruzi trams-sialidase: a potent and specific survival factor for human Schwann cells by means of phosphatidyl inositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 2001; 98(17):9936–9941.PubMedCrossRefGoogle Scholar
  44. 44.
    Petersen CA, Krumholz KA, Carmen J et al. Trypanosoma cruzi Infection and nuclear factor kappa B activation prevent apoptosis in cardiac cells. Infect Immun 2006; 74(3):1580–1587.PubMedCrossRefGoogle Scholar
  45. 45.
    Aoki MDP, Cano RC, Pellegrini AV et al. Different signaling pathways are involved in cardiomyocyte survival induced by a Trypanosoma cruzi glycoprotein. Microbes and Infection 2006; 8(7):1723–1731.CrossRefGoogle Scholar
  46. 46.
    Woolsey AM, Burleigh BA. Host cell actin polymerization is required for cellular retention of Trypanosoma cruzi and early association with endosomal/lysosomal compartments. Cellular Microbiology 2004; 6(9):829–838.PubMedCrossRefGoogle Scholar
  47. 47.
    Kjeken R, Egeberg M, Habermann A et al. Fusion between phagosomes, early and late endosomes: A role for actin in fusion between late, but not early endocytic organelles. Mol Biol Cell 2004; 15(1):345–358.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Department of Immunology and Infectious DiseasesHarvard School of Public HealthBostonUSA

Personalised recommendations